{"title":"misORFPred:使用增强型可扩展 k-mer 和动态组合投票策略挖掘植物 Pri-miRNA 中可翻译 sORF 的新方法。","authors":"Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan","doi":"10.1007/s12539-024-00661-8","DOIUrl":null,"url":null,"abstract":"<p><p>The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy.\",\"authors\":\"Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan\",\"doi\":\"10.1007/s12539-024-00661-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00661-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00661-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy.
The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.