基因组数据的高效存储与分析:k-mer 频率映射和图像表示方法

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz
{"title":"基因组数据的高效存储与分析:k-mer 频率映射和图像表示方法","authors":"Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz","doi":"10.1007/s12539-024-00659-2","DOIUrl":null,"url":null,"abstract":"<p><p>k-mer frequencies are crucial for understanding DNA sequence patterns and structure, with applications in motif discovery, genome classification, and short read assembly. However, the exponential increase in the dimension of frequency tables with increasing k-mer length poses storage challenges. In this study, we present a novel method for compressing k-mer data without information loss, aiming to optimize storage and analysis processes. We employed Chaos Game Representation (CGR) to map k-mers to coordinates and used these components to generate raster images of k-mers. The CGR maps were partitioned and labeled based on substrings, with each substring mapped to a subframe, creating a fractal-like structure. The entire k-mer frequency set of each genomic sequence was represented as a single image, with each pixel corresponding to a specific k-mer and its occurrence. This approach reduced file size by up to 16-fold compared to plain text and 3-fold compared to binary format. Furthermore, we demonstrated the feasibility of performing alignment-free similarity analyses on images derived from k-mer frequencies of whole genome sequences from 14 plant species. Our results highlight the potential of this method as a fast and efficient tool for accessing, processing, and analyzing large biological sequence datasets, enabling the retrieval of k-mer frequencies and image reconstruction.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Storage and Analysis of Genomic Data: A k-mer Frequency Mapping and Image Representation Method.\",\"authors\":\"Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz\",\"doi\":\"10.1007/s12539-024-00659-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>k-mer frequencies are crucial for understanding DNA sequence patterns and structure, with applications in motif discovery, genome classification, and short read assembly. However, the exponential increase in the dimension of frequency tables with increasing k-mer length poses storage challenges. In this study, we present a novel method for compressing k-mer data without information loss, aiming to optimize storage and analysis processes. We employed Chaos Game Representation (CGR) to map k-mers to coordinates and used these components to generate raster images of k-mers. The CGR maps were partitioned and labeled based on substrings, with each substring mapped to a subframe, creating a fractal-like structure. The entire k-mer frequency set of each genomic sequence was represented as a single image, with each pixel corresponding to a specific k-mer and its occurrence. This approach reduced file size by up to 16-fold compared to plain text and 3-fold compared to binary format. Furthermore, we demonstrated the feasibility of performing alignment-free similarity analyses on images derived from k-mer frequencies of whole genome sequences from 14 plant species. Our results highlight the potential of this method as a fast and efficient tool for accessing, processing, and analyzing large biological sequence datasets, enabling the retrieval of k-mer frequencies and image reconstruction.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00659-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00659-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

k-mer 频率对于理解 DNA 序列模式和结构至关重要,可应用于主题发现、基因组分类和短文本组装。然而,随着 k-mer 长度的增加,频率表的维度呈指数增长,这给存储带来了挑战。在本研究中,我们提出了一种在不损失信息的情况下压缩 k-mer 数据的新方法,旨在优化存储和分析过程。我们采用混沌博弈表示法(CGR)将 k-聚合体映射到坐标,并利用这些分量生成 k-聚合体的栅格图像。我们根据子串对 CGR 地图进行了分割和标记,每个子串映射到一个子帧,从而创建了一个类似分形的结构。每个基因组序列的整个 k-聚合体频率集被表示为一幅图像,每个像素对应一个特定的 k-聚合体及其出现情况。与纯文本格式相比,这种方法将文件大小缩小了 16 倍,与二进制格式相比缩小了 3 倍。此外,我们还证明了对来自 14 个植物物种的全基因组序列 k-聚合体频率的图像进行无配对相似性分析的可行性。我们的研究结果凸显了这种方法的潜力,它是访问、处理和分析大型生物序列数据集的快速高效工具,可以检索 k-mer 频率和重建图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Storage and Analysis of Genomic Data: A k-mer Frequency Mapping and Image Representation Method.

k-mer frequencies are crucial for understanding DNA sequence patterns and structure, with applications in motif discovery, genome classification, and short read assembly. However, the exponential increase in the dimension of frequency tables with increasing k-mer length poses storage challenges. In this study, we present a novel method for compressing k-mer data without information loss, aiming to optimize storage and analysis processes. We employed Chaos Game Representation (CGR) to map k-mers to coordinates and used these components to generate raster images of k-mers. The CGR maps were partitioned and labeled based on substrings, with each substring mapped to a subframe, creating a fractal-like structure. The entire k-mer frequency set of each genomic sequence was represented as a single image, with each pixel corresponding to a specific k-mer and its occurrence. This approach reduced file size by up to 16-fold compared to plain text and 3-fold compared to binary format. Furthermore, we demonstrated the feasibility of performing alignment-free similarity analyses on images derived from k-mer frequencies of whole genome sequences from 14 plant species. Our results highlight the potential of this method as a fast and efficient tool for accessing, processing, and analyzing large biological sequence datasets, enabling the retrieval of k-mer frequencies and image reconstruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信