{"title":"在咪喹莫特诱导的银屑病小鼠模型中,N-乙酰葡糖胺通过 IL-17 A-MAPK 通路调节 Plet1 的表达。","authors":"Balachandar Selvakumar, Bilal Rah, Jayalakshmi Jagal, Priyadarshini Sekar, Raneem Moustafa, Rakhee Kizhuvappat Ramakrishnan, Mohamed Haider, Saleh Mohamed Ibrahim, Rani Samsudin","doi":"10.1007/s00011-024-01958-6","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis (Ps) is a chronic inflammatory disorder marked by skin plaque formation, driven by immune dysregulation and genetic factors. Despite the available treatments, incidence of Ps is increasing in the dermatology patients. Novel strategies are crucial due to current treatment limitations. The interleukin 17 (IL-17) pathway is pivotal in Ps pathogenesis, however the expression of its putative target gene placenta expressed transcript 1 (Plet1) remains unstudied in Ps. Considering the potential anti-inflammatory properties of N-Acetylglucosamine (GlcNAc), our study explored its role in modulating Plet1 expression in an imiquimod (IMQ)-induced Ps mouse model. Our data demonstarted a significant reduction of inflammation and Psoriasis Area and Severity Index (PASI) scores, downregulation of growth factors (GFs), IL-17 A, and MAPK expression after GlcNAc treatment. In addition, GlcNAc treatment reduced neutrophils, monocyte-dendritic cells (Mo-DC) and conventional T cells (Tcons) while increasing monocyte-macrophages (Mo-Macs) and regulatory T cells (Tregs). GlcNAc treatment also downregulated Plet1 overexpression in psoriatic mouse skin and in vitro, reduced proliferation and apoptosis in IL-17 A stimulated human dermal fibroblasts (HDF), along with IL-17 A and TGF-β mRNA expression. Together, these data suggest that, GlcNAc interferes with downstream mechanisms in IL-17 pathway and downregulating Plet1 expression, presenting a promising strategy for Ps treatment.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of Plet1 expression by N-Acetylglucosamine through the IL-17 A-MAPK pathway in an imiquimod-induced psoriasis mouse model.\",\"authors\":\"Balachandar Selvakumar, Bilal Rah, Jayalakshmi Jagal, Priyadarshini Sekar, Raneem Moustafa, Rakhee Kizhuvappat Ramakrishnan, Mohamed Haider, Saleh Mohamed Ibrahim, Rani Samsudin\",\"doi\":\"10.1007/s00011-024-01958-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psoriasis (Ps) is a chronic inflammatory disorder marked by skin plaque formation, driven by immune dysregulation and genetic factors. Despite the available treatments, incidence of Ps is increasing in the dermatology patients. Novel strategies are crucial due to current treatment limitations. The interleukin 17 (IL-17) pathway is pivotal in Ps pathogenesis, however the expression of its putative target gene placenta expressed transcript 1 (Plet1) remains unstudied in Ps. Considering the potential anti-inflammatory properties of N-Acetylglucosamine (GlcNAc), our study explored its role in modulating Plet1 expression in an imiquimod (IMQ)-induced Ps mouse model. Our data demonstarted a significant reduction of inflammation and Psoriasis Area and Severity Index (PASI) scores, downregulation of growth factors (GFs), IL-17 A, and MAPK expression after GlcNAc treatment. In addition, GlcNAc treatment reduced neutrophils, monocyte-dendritic cells (Mo-DC) and conventional T cells (Tcons) while increasing monocyte-macrophages (Mo-Macs) and regulatory T cells (Tregs). GlcNAc treatment also downregulated Plet1 overexpression in psoriatic mouse skin and in vitro, reduced proliferation and apoptosis in IL-17 A stimulated human dermal fibroblasts (HDF), along with IL-17 A and TGF-β mRNA expression. Together, these data suggest that, GlcNAc interferes with downstream mechanisms in IL-17 pathway and downregulating Plet1 expression, presenting a promising strategy for Ps treatment.</p>\",\"PeriodicalId\":13550,\"journal\":{\"name\":\"Inflammation Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00011-024-01958-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-024-01958-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
银屑病(Ps)是一种以皮肤斑块形成为特征的慢性炎症性疾病,由免疫调节失调和遗传因素引起。尽管有多种治疗方法,但银屑病在皮肤科患者中的发病率仍在上升。由于目前治疗方法的局限性,新策略至关重要。白细胞介素 17(IL-17)通路在 Ps 发病机制中起着关键作用,但其假定靶基因胎盘表达转录本 1(Plet1)在 Ps 中的表达仍未得到研究。 考虑到 N-乙酰葡糖胺(GlcNAc)潜在的抗炎特性,我们的研究探讨了它在咪喹莫特(IMQ)诱导的 Ps 小鼠模型中调节 Plet1 表达的作用。我们的数据显示,GlcNAc治疗后,炎症和银屑病面积和严重程度指数(PASI)评分明显降低,生长因子(GFs)、IL-17 A和MAPK表达下调。此外,GlcNAc 处理还减少了中性粒细胞、单核-树突状细胞(Mo-DC)和传统 T 细胞(Tcons),同时增加了单核-巨噬细胞(Mo-Macs)和调节性 T 细胞(Tregs)。GlcNAc 处理还能下调银屑病小鼠皮肤中 Plet1 的过表达,并在体外减少 IL-17 A 刺激的人真皮成纤维细胞(HDF)的增殖和凋亡,以及 IL-17 A 和 TGF-β mRNA 的表达。这些数据共同表明,GlcNAc 可干扰 IL-17 通路的下游机制并下调 Plet1 的表达,从而为 Ps 治疗提供了一种有前景的策略。
Modulation of Plet1 expression by N-Acetylglucosamine through the IL-17 A-MAPK pathway in an imiquimod-induced psoriasis mouse model.
Psoriasis (Ps) is a chronic inflammatory disorder marked by skin plaque formation, driven by immune dysregulation and genetic factors. Despite the available treatments, incidence of Ps is increasing in the dermatology patients. Novel strategies are crucial due to current treatment limitations. The interleukin 17 (IL-17) pathway is pivotal in Ps pathogenesis, however the expression of its putative target gene placenta expressed transcript 1 (Plet1) remains unstudied in Ps. Considering the potential anti-inflammatory properties of N-Acetylglucosamine (GlcNAc), our study explored its role in modulating Plet1 expression in an imiquimod (IMQ)-induced Ps mouse model. Our data demonstarted a significant reduction of inflammation and Psoriasis Area and Severity Index (PASI) scores, downregulation of growth factors (GFs), IL-17 A, and MAPK expression after GlcNAc treatment. In addition, GlcNAc treatment reduced neutrophils, monocyte-dendritic cells (Mo-DC) and conventional T cells (Tcons) while increasing monocyte-macrophages (Mo-Macs) and regulatory T cells (Tregs). GlcNAc treatment also downregulated Plet1 overexpression in psoriatic mouse skin and in vitro, reduced proliferation and apoptosis in IL-17 A stimulated human dermal fibroblasts (HDF), along with IL-17 A and TGF-β mRNA expression. Together, these data suggest that, GlcNAc interferes with downstream mechanisms in IL-17 pathway and downregulating Plet1 expression, presenting a promising strategy for Ps treatment.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.