药理蛋白基因组学方法为癌症药物的重新定位确定靶向激酶抑制剂。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Rei Noguchi, Julia Osaki, Takuya Ono, Yuki Adachi, Shuhei Iwata, Yuki Yoshimatsu, Kazuki Sasaki, Akira Kawai, Tadashi Kondo
{"title":"药理蛋白基因组学方法为癌症药物的重新定位确定靶向激酶抑制剂。","authors":"Rei Noguchi, Julia Osaki, Takuya Ono, Yuki Adachi, Shuhei Iwata, Yuki Yoshimatsu, Kazuki Sasaki, Akira Kawai, Tadashi Kondo","doi":"10.1007/s11626-024-00983-3","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repositioning of approved drugs offers advantages over de novo drug development for a rare type of cancer. To efficiently identify on-target drugs from clinically successful kinase inhibitors in cancer drug repositioning, drug screening and molecular profiling of cell lines are essential to exclude off-targets. We developed a pharmacoproteogenomic approach to identify on-target kinase inhibitors, combining molecular profiling of genomic features and kinase activity, and drug screening of patient-derived cell lines. This study examined eight patient-derived giant cell tumor of the bone (GCTB) cell lines, all of which harbored a signature mutation of H3-3A but otherwise without recurrent copy number variants and mutations. Kinase activity profiles of 100 tyrosine kinases with a three-dimensional substrate peptide array revealed that nine kinases were highly activated. Pharmacological screening of 60 clinically used kinase inhibitors found that nine drugs directed at 29 kinases strongly suppressed cell viability. We regarded ABL1, EGFR, and LCK as on-target kinases; among the two corresponding on-target kinase inhibitors, osimertinib and ponatinib emerged as on-target drugs whose target kinases were significantly activated. The remaining 26 kinases and seven kinase inhibitors were excluded as off-targets. Our pharmacoproteomic approach enabled the identification of on-target kinase inhibitors that are useful for drug repositioning.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1200-1214"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacoproteogenomic approach identifies on-target kinase inhibitors for cancer drug repositioning.\",\"authors\":\"Rei Noguchi, Julia Osaki, Takuya Ono, Yuki Adachi, Shuhei Iwata, Yuki Yoshimatsu, Kazuki Sasaki, Akira Kawai, Tadashi Kondo\",\"doi\":\"10.1007/s11626-024-00983-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug repositioning of approved drugs offers advantages over de novo drug development for a rare type of cancer. To efficiently identify on-target drugs from clinically successful kinase inhibitors in cancer drug repositioning, drug screening and molecular profiling of cell lines are essential to exclude off-targets. We developed a pharmacoproteogenomic approach to identify on-target kinase inhibitors, combining molecular profiling of genomic features and kinase activity, and drug screening of patient-derived cell lines. This study examined eight patient-derived giant cell tumor of the bone (GCTB) cell lines, all of which harbored a signature mutation of H3-3A but otherwise without recurrent copy number variants and mutations. Kinase activity profiles of 100 tyrosine kinases with a three-dimensional substrate peptide array revealed that nine kinases were highly activated. Pharmacological screening of 60 clinically used kinase inhibitors found that nine drugs directed at 29 kinases strongly suppressed cell viability. We regarded ABL1, EGFR, and LCK as on-target kinases; among the two corresponding on-target kinase inhibitors, osimertinib and ponatinib emerged as on-target drugs whose target kinases were significantly activated. The remaining 26 kinases and seven kinase inhibitors were excluded as off-targets. Our pharmacoproteomic approach enabled the identification of on-target kinase inhibitors that are useful for drug repositioning.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"1200-1214\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00983-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00983-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

针对一种罕见的癌症,对已获批准的药物进行重新定位比从头开始开发药物更具优势。在癌症药物重新定位过程中,要从临床成功的激酶抑制剂中有效识别出靶向药物,就必须对细胞系进行药物筛选和分子图谱分析,以排除非靶向药物。我们开发了一种药理蛋白基因组学方法,将基因组特征和激酶活性的分子图谱分析与患者来源细胞系的药物筛选相结合,以确定靶上激酶抑制剂。这项研究检查了八种患者来源的骨巨细胞瘤(GCTB)细胞系,所有这些细胞系都存在H3-3A的标志性突变,但除此之外没有复发性拷贝数变异和突变。利用三维底物肽阵列对 100 种酪氨酸激酶进行的激酶活性分析表明,有 9 种激酶被高度激活。对 60 种临床使用的激酶抑制剂进行药理筛选后发现,9 种针对 29 种激酶的药物强烈抑制了细胞活力。我们将ABL1、表皮生长因子受体(EGFR)和LCK视为靶上激酶;在两种相应的靶上激酶抑制剂中,奥希替尼和泊纳替尼成为靶上药物,其靶激酶被显著激活。其余26种激酶和7种激酶抑制剂被排除在非靶点之外。我们的药理蛋白组学方法能够鉴定出有助于药物重新定位的靶向激酶抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacoproteogenomic approach identifies on-target kinase inhibitors for cancer drug repositioning.

Drug repositioning of approved drugs offers advantages over de novo drug development for a rare type of cancer. To efficiently identify on-target drugs from clinically successful kinase inhibitors in cancer drug repositioning, drug screening and molecular profiling of cell lines are essential to exclude off-targets. We developed a pharmacoproteogenomic approach to identify on-target kinase inhibitors, combining molecular profiling of genomic features and kinase activity, and drug screening of patient-derived cell lines. This study examined eight patient-derived giant cell tumor of the bone (GCTB) cell lines, all of which harbored a signature mutation of H3-3A but otherwise without recurrent copy number variants and mutations. Kinase activity profiles of 100 tyrosine kinases with a three-dimensional substrate peptide array revealed that nine kinases were highly activated. Pharmacological screening of 60 clinically used kinase inhibitors found that nine drugs directed at 29 kinases strongly suppressed cell viability. We regarded ABL1, EGFR, and LCK as on-target kinases; among the two corresponding on-target kinase inhibitors, osimertinib and ponatinib emerged as on-target drugs whose target kinases were significantly activated. The remaining 26 kinases and seven kinase inhibitors were excluded as off-targets. Our pharmacoproteomic approach enabled the identification of on-target kinase inhibitors that are useful for drug repositioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信