开发新型木瓜蛋白酶凝胶配方:探索不同浓度的涂片层脱蛋白和增强牙本质粘接效果。

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2024-10-05 eCollection Date: 2024-10-15 DOI:10.1016/j.heliyon.2024.e39035
Citra Kusumasari, Ratna Meidyawati, Aryo Megantoro, Rachendra Tiara, Agita Meiskya, Khaled M Darwish, Ahmed Abdou
{"title":"开发新型木瓜蛋白酶凝胶配方:探索不同浓度的涂片层脱蛋白和增强牙本质粘接效果。","authors":"Citra Kusumasari, Ratna Meidyawati, Aryo Megantoro, Rachendra Tiara, Agita Meiskya, Khaled M Darwish, Ahmed Abdou","doi":"10.1016/j.heliyon.2024.e39035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The self-etch adhesive system modifies but does not completely remove the smear layer, leading to the weakening of the bond strength due to the formation of a hybridized layer. Smear-layer deproteinization with papain enzyme partially removes the smear layer, and increases the bond strength with self-etch adhesive. The aim was to develop a deproteinizing agent with a high papain enzyme concentration to enhance dentin bonding with self-etch adhesives.</p><p><strong>Methods: </strong>Papain enzyme gel formulations (15 and 30 IU/g) were prepared and tested for physical stability, viscosity, pH, homogeneity, and organoleptic properties. Moreover, 64 teeth were used to test the deproteinization efficiency of the formed gel. Fourier transform infrared was used to calculate the ratio of organic to inorganic components of smear-layer after deproteinization with 15 and 30 IU/g papain gel and a 6 IU/g commercial papain gel. Moreover, tensile bond strength was measured after deproteinization and dentin bonding with self-etching adhesive for the same groups. A molecular modeling simulation was also performed to evaluate the protein-protein binding interaction, predict the conformational/orientation patterns, and estimate the binding energies of papain with collagen target protein.</p><p><strong>Results: </strong>Both 15 and 30 IU/g gels exhibited similar viscosity, pH, homogeneity, and organoleptic properties. However, after 60 s, the 15 IU/g gel was solid, while the 30 IU/g gel was half-solid. All tested groups decreased the amide:phosphate ratio and increased tensile bond strength. Binding complexes between papain and three deposited collagen-1 structures formed strong binding energies with high negative values and residue-wise binding patterns.</p><p><strong>Conclusions: </strong>The production of the papain enzyme gel with a concentration of 15 IU/g was successful. In addition, it demonstrated promising results when used as a smear-layer deproteinization agent.</p><p><strong>Clinical significance: </strong>Enzymatic smear-layer deproteinization may improve dentin adhesion, and high concertation papain enzyme gels may improve dentin adhesion with the use of self-etch adhesive.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492583/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a novel papain gel formulation: Exploring different concentrations for smear-layer deproteinization and enhanced dentin bonding.\",\"authors\":\"Citra Kusumasari, Ratna Meidyawati, Aryo Megantoro, Rachendra Tiara, Agita Meiskya, Khaled M Darwish, Ahmed Abdou\",\"doi\":\"10.1016/j.heliyon.2024.e39035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The self-etch adhesive system modifies but does not completely remove the smear layer, leading to the weakening of the bond strength due to the formation of a hybridized layer. Smear-layer deproteinization with papain enzyme partially removes the smear layer, and increases the bond strength with self-etch adhesive. The aim was to develop a deproteinizing agent with a high papain enzyme concentration to enhance dentin bonding with self-etch adhesives.</p><p><strong>Methods: </strong>Papain enzyme gel formulations (15 and 30 IU/g) were prepared and tested for physical stability, viscosity, pH, homogeneity, and organoleptic properties. Moreover, 64 teeth were used to test the deproteinization efficiency of the formed gel. Fourier transform infrared was used to calculate the ratio of organic to inorganic components of smear-layer after deproteinization with 15 and 30 IU/g papain gel and a 6 IU/g commercial papain gel. Moreover, tensile bond strength was measured after deproteinization and dentin bonding with self-etching adhesive for the same groups. A molecular modeling simulation was also performed to evaluate the protein-protein binding interaction, predict the conformational/orientation patterns, and estimate the binding energies of papain with collagen target protein.</p><p><strong>Results: </strong>Both 15 and 30 IU/g gels exhibited similar viscosity, pH, homogeneity, and organoleptic properties. However, after 60 s, the 15 IU/g gel was solid, while the 30 IU/g gel was half-solid. All tested groups decreased the amide:phosphate ratio and increased tensile bond strength. Binding complexes between papain and three deposited collagen-1 structures formed strong binding energies with high negative values and residue-wise binding patterns.</p><p><strong>Conclusions: </strong>The production of the papain enzyme gel with a concentration of 15 IU/g was successful. In addition, it demonstrated promising results when used as a smear-layer deproteinization agent.</p><p><strong>Clinical significance: </strong>Enzymatic smear-layer deproteinization may improve dentin adhesion, and high concertation papain enzyme gels may improve dentin adhesion with the use of self-etch adhesive.</p>\",\"PeriodicalId\":12894,\"journal\":{\"name\":\"Heliyon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heliyon\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.heliyon.2024.e39035\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2024.e39035","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a novel papain gel formulation: Exploring different concentrations for smear-layer deproteinization and enhanced dentin bonding.

Background: The self-etch adhesive system modifies but does not completely remove the smear layer, leading to the weakening of the bond strength due to the formation of a hybridized layer. Smear-layer deproteinization with papain enzyme partially removes the smear layer, and increases the bond strength with self-etch adhesive. The aim was to develop a deproteinizing agent with a high papain enzyme concentration to enhance dentin bonding with self-etch adhesives.

Methods: Papain enzyme gel formulations (15 and 30 IU/g) were prepared and tested for physical stability, viscosity, pH, homogeneity, and organoleptic properties. Moreover, 64 teeth were used to test the deproteinization efficiency of the formed gel. Fourier transform infrared was used to calculate the ratio of organic to inorganic components of smear-layer after deproteinization with 15 and 30 IU/g papain gel and a 6 IU/g commercial papain gel. Moreover, tensile bond strength was measured after deproteinization and dentin bonding with self-etching adhesive for the same groups. A molecular modeling simulation was also performed to evaluate the protein-protein binding interaction, predict the conformational/orientation patterns, and estimate the binding energies of papain with collagen target protein.

Results: Both 15 and 30 IU/g gels exhibited similar viscosity, pH, homogeneity, and organoleptic properties. However, after 60 s, the 15 IU/g gel was solid, while the 30 IU/g gel was half-solid. All tested groups decreased the amide:phosphate ratio and increased tensile bond strength. Binding complexes between papain and three deposited collagen-1 structures formed strong binding energies with high negative values and residue-wise binding patterns.

Conclusions: The production of the papain enzyme gel with a concentration of 15 IU/g was successful. In addition, it demonstrated promising results when used as a smear-layer deproteinization agent.

Clinical significance: Enzymatic smear-layer deproteinization may improve dentin adhesion, and high concertation papain enzyme gels may improve dentin adhesion with the use of self-etch adhesive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信