{"title":"基于 CNN-GRU 机器学习模型的铣削温度场快速重建。","authors":"Fengyuan Ma, Haoyu Wang, Mingfeng E, Zhongjin Sha, Xingshu Wang, Yunxian Cui, Junwei Yin","doi":"10.3389/fnbot.2024.1448482","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of intelligent manufacturing technology, robots have become more widespread in the field of milling processing. When milling difficult-to-machine alloy materials, the localized high temperature and large temperature gradient at the front face of the tool lead to shortened tool life and poor machining quality. The existing temperature field reconstruction methods have many assumptions, large arithmetic volume and long solution time. In this paper, an inverse heat conduction problem solution model based on Gated Convolutional Recurrent Neural Network (CNN-GRU) is proposed for reconstructing the temperature field of the tool during milling. In order to ensure the speed and accuracy of the reconstruction, we propose to utilize the inverse heat conduction problem solution model constructed by knowledge distillation (KD) and compression acceleration, which achieves a significant reduction of the training time with a small loss of optimality and ensures the accuracy and efficiency of the prediction model. With different levels of random noise added to the model input data, CNN-GRU + KD is noise-resistant and still shows good robustness and stability under noisy data. The temperature field reconstruction of the milling tool is carried out for three different working conditions, and the curve fitting excellence under the three conditions is 0.97 at the highest, and the root mean square error is 1.43°C at the minimum, respectively, and the experimental results show that the model is feasible and effective in carrying out the temperature field reconstruction of the milling tool and is of great significance in improving the accuracy of the milling machining robot.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1448482"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466942/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast reconstruction of milling temperature field based on CNN-GRU machine learning models.\",\"authors\":\"Fengyuan Ma, Haoyu Wang, Mingfeng E, Zhongjin Sha, Xingshu Wang, Yunxian Cui, Junwei Yin\",\"doi\":\"10.3389/fnbot.2024.1448482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of intelligent manufacturing technology, robots have become more widespread in the field of milling processing. When milling difficult-to-machine alloy materials, the localized high temperature and large temperature gradient at the front face of the tool lead to shortened tool life and poor machining quality. The existing temperature field reconstruction methods have many assumptions, large arithmetic volume and long solution time. In this paper, an inverse heat conduction problem solution model based on Gated Convolutional Recurrent Neural Network (CNN-GRU) is proposed for reconstructing the temperature field of the tool during milling. In order to ensure the speed and accuracy of the reconstruction, we propose to utilize the inverse heat conduction problem solution model constructed by knowledge distillation (KD) and compression acceleration, which achieves a significant reduction of the training time with a small loss of optimality and ensures the accuracy and efficiency of the prediction model. With different levels of random noise added to the model input data, CNN-GRU + KD is noise-resistant and still shows good robustness and stability under noisy data. The temperature field reconstruction of the milling tool is carried out for three different working conditions, and the curve fitting excellence under the three conditions is 0.97 at the highest, and the root mean square error is 1.43°C at the minimum, respectively, and the experimental results show that the model is feasible and effective in carrying out the temperature field reconstruction of the milling tool and is of great significance in improving the accuracy of the milling machining robot.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"18 \",\"pages\":\"1448482\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1448482\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1448482","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fast reconstruction of milling temperature field based on CNN-GRU machine learning models.
With the development of intelligent manufacturing technology, robots have become more widespread in the field of milling processing. When milling difficult-to-machine alloy materials, the localized high temperature and large temperature gradient at the front face of the tool lead to shortened tool life and poor machining quality. The existing temperature field reconstruction methods have many assumptions, large arithmetic volume and long solution time. In this paper, an inverse heat conduction problem solution model based on Gated Convolutional Recurrent Neural Network (CNN-GRU) is proposed for reconstructing the temperature field of the tool during milling. In order to ensure the speed and accuracy of the reconstruction, we propose to utilize the inverse heat conduction problem solution model constructed by knowledge distillation (KD) and compression acceleration, which achieves a significant reduction of the training time with a small loss of optimality and ensures the accuracy and efficiency of the prediction model. With different levels of random noise added to the model input data, CNN-GRU + KD is noise-resistant and still shows good robustness and stability under noisy data. The temperature field reconstruction of the milling tool is carried out for three different working conditions, and the curve fitting excellence under the three conditions is 0.97 at the highest, and the root mean square error is 1.43°C at the minimum, respectively, and the experimental results show that the model is feasible and effective in carrying out the temperature field reconstruction of the milling tool and is of great significance in improving the accuracy of the milling machining robot.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.