{"title":"斑马鱼代谢组织中的脂肪量和肥胖相关基因及同源转录因子iriquois-3 mRNA谱系受摄食和食物剥夺的调节。","authors":"Katayoon Karimzadeh , Chinelo Uju , Asgar Zahmatkesh , Suraj Unniappan","doi":"10.1016/j.ygcen.2024.114621","DOIUrl":null,"url":null,"abstract":"<div><div>Fat mass and obesity associated gene (FTO) has been strongly associated with obesity, and it is functionally linked to the homeobox transcription factor iriquois-3 (IRX3). In mammals, FTO and IRX3 are involved in the regulation of food intake and metabolism. This study aimed to determine whether FTO and IRX3<!--> <!-->are affected by feeding and food unavailability. FTO and IRX3 mRNA and protein were found widely distributed in all tissues examined, including the brain, muscle, gut, and liver. Postprandial increase in the abundance of FTO and IRX3 mRNAs was observed in metabolic tissues of both male and female zebrafish at 1 h post-feeding. Meanwhile, their expression in the brain and gut decreased at 3 h post-feeding, reaching preprandial levels. Additionally, FTO and IRX3 mRNA abundance in examined tissues increased after 7 days of food deprivation, but substantially decreased after refeeding for 24 h. In summary, we report that both FTO and IRX3 are meal-sensitive genes in zebrafish. The fasting-induced increase suggests a possible appetite regulatory role for FTO and IRX3 in zebrafish. These findings highlight the importance of FTO and IRX3 in appetite and metabolic regulation in zebrafish.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"360 ","pages":"Article 114621"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fat mass and obesity associated gene and homeobox transcription factor iriquois-3 mRNA profiles in the metabolic tissues of zebrafish are modulated by feeding and food deprivation\",\"authors\":\"Katayoon Karimzadeh , Chinelo Uju , Asgar Zahmatkesh , Suraj Unniappan\",\"doi\":\"10.1016/j.ygcen.2024.114621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fat mass and obesity associated gene (FTO) has been strongly associated with obesity, and it is functionally linked to the homeobox transcription factor iriquois-3 (IRX3). In mammals, FTO and IRX3 are involved in the regulation of food intake and metabolism. This study aimed to determine whether FTO and IRX3<!--> <!-->are affected by feeding and food unavailability. FTO and IRX3 mRNA and protein were found widely distributed in all tissues examined, including the brain, muscle, gut, and liver. Postprandial increase in the abundance of FTO and IRX3 mRNAs was observed in metabolic tissues of both male and female zebrafish at 1 h post-feeding. Meanwhile, their expression in the brain and gut decreased at 3 h post-feeding, reaching preprandial levels. Additionally, FTO and IRX3 mRNA abundance in examined tissues increased after 7 days of food deprivation, but substantially decreased after refeeding for 24 h. In summary, we report that both FTO and IRX3 are meal-sensitive genes in zebrafish. The fasting-induced increase suggests a possible appetite regulatory role for FTO and IRX3 in zebrafish. These findings highlight the importance of FTO and IRX3 in appetite and metabolic regulation in zebrafish.</div></div>\",\"PeriodicalId\":12582,\"journal\":{\"name\":\"General and comparative endocrinology\",\"volume\":\"360 \",\"pages\":\"Article 114621\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General and comparative endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016648024001849\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648024001849","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Fat mass and obesity associated gene and homeobox transcription factor iriquois-3 mRNA profiles in the metabolic tissues of zebrafish are modulated by feeding and food deprivation
Fat mass and obesity associated gene (FTO) has been strongly associated with obesity, and it is functionally linked to the homeobox transcription factor iriquois-3 (IRX3). In mammals, FTO and IRX3 are involved in the regulation of food intake and metabolism. This study aimed to determine whether FTO and IRX3 are affected by feeding and food unavailability. FTO and IRX3 mRNA and protein were found widely distributed in all tissues examined, including the brain, muscle, gut, and liver. Postprandial increase in the abundance of FTO and IRX3 mRNAs was observed in metabolic tissues of both male and female zebrafish at 1 h post-feeding. Meanwhile, their expression in the brain and gut decreased at 3 h post-feeding, reaching preprandial levels. Additionally, FTO and IRX3 mRNA abundance in examined tissues increased after 7 days of food deprivation, but substantially decreased after refeeding for 24 h. In summary, we report that both FTO and IRX3 are meal-sensitive genes in zebrafish. The fasting-induced increase suggests a possible appetite regulatory role for FTO and IRX3 in zebrafish. These findings highlight the importance of FTO and IRX3 in appetite and metabolic regulation in zebrafish.
期刊介绍:
General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.