一种用于便携式设备的自动咳嗽计数方法和系统构造。

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1477694
Yixuan Wang, Kehaoyu Yang, Shaofeng Xu, Shuwang Rui, Jiaxing Xie, Juncheng Wang, Xin Wang
{"title":"一种用于便携式设备的自动咳嗽计数方法和系统构造。","authors":"Yixuan Wang, Kehaoyu Yang, Shaofeng Xu, Shuwang Rui, Jiaxing Xie, Juncheng Wang, Xin Wang","doi":"10.3389/fbioe.2024.1477694","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cough is a common symptom of respiratory diseases, and prolonged monitoring of cough can help assist doctors in making judgments about patients' conditions, among which cough frequency is an indicator that characterizes the state of the patient's lungs. Therefore, the aim of this paper is to design an automatic cough counting system to monitor the number of coughs per minute for a long period of time.</p><p><strong>Methods: </strong>In this paper, a complete cough counting process is proposed, including denoising, segment extraction, eigenvalue calculation, recognition, and counting process; and a wearable automatic cough counting device containing acquisition and reception software. The design and construction of the algorithm is based on realistically captured cough-containing audio from 50 patients, combined with short-time features, and Meier cepstrum coefficients as features characterizing the cough.</p><p><strong>Results: </strong>The accuracy, sensitivity, specificity, and F1 score of the method were 93.24%, 97.58%, 86.97%, and 94.47%, respectively, with a Kappa value of 0.9209, an average counting error of 0.46 counts for a 60-s speech segment, and an average runtime of 2.80 ± 2.27 s.</p><p><strong>Discussion: </strong>This method improves the double threshold method in terms of the threshold and eigenvalues of the cough segments' sensitivity and has better performance in terms of accuracy, real-time performance, and computing speed, which can be applied to real-time cough counting and monitoring in small portable devices with limited computing power. The developed wearable portable automatic cough counting device and the accompanying host computer software application can realize the long-term monitoring of patients' coughing condition.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466865/pdf/","citationCount":"0","resultStr":"{\"title\":\"An automatic cough counting method and system construction for portable devices.\",\"authors\":\"Yixuan Wang, Kehaoyu Yang, Shaofeng Xu, Shuwang Rui, Jiaxing Xie, Juncheng Wang, Xin Wang\",\"doi\":\"10.3389/fbioe.2024.1477694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cough is a common symptom of respiratory diseases, and prolonged monitoring of cough can help assist doctors in making judgments about patients' conditions, among which cough frequency is an indicator that characterizes the state of the patient's lungs. Therefore, the aim of this paper is to design an automatic cough counting system to monitor the number of coughs per minute for a long period of time.</p><p><strong>Methods: </strong>In this paper, a complete cough counting process is proposed, including denoising, segment extraction, eigenvalue calculation, recognition, and counting process; and a wearable automatic cough counting device containing acquisition and reception software. The design and construction of the algorithm is based on realistically captured cough-containing audio from 50 patients, combined with short-time features, and Meier cepstrum coefficients as features characterizing the cough.</p><p><strong>Results: </strong>The accuracy, sensitivity, specificity, and F1 score of the method were 93.24%, 97.58%, 86.97%, and 94.47%, respectively, with a Kappa value of 0.9209, an average counting error of 0.46 counts for a 60-s speech segment, and an average runtime of 2.80 ± 2.27 s.</p><p><strong>Discussion: </strong>This method improves the double threshold method in terms of the threshold and eigenvalues of the cough segments' sensitivity and has better performance in terms of accuracy, real-time performance, and computing speed, which can be applied to real-time cough counting and monitoring in small portable devices with limited computing power. The developed wearable portable automatic cough counting device and the accompanying host computer software application can realize the long-term monitoring of patients' coughing condition.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2024.1477694\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1477694","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

引言咳嗽是呼吸系统疾病的常见症状,长期监测咳嗽有助于帮助医生判断病人的病情,其中咳嗽次数是表征病人肺部状况的一个指标。因此,本文旨在设计一种自动咳嗽计数系统,以长时间监测每分钟的咳嗽次数:本文提出了一个完整的咳嗽计数过程,包括去噪、片段提取、特征值计算、识别和计数过程;以及一个包含采集和接收软件的可穿戴式自动咳嗽计数装置。算法的设计和构建以真实采集的 50 名患者的咳嗽音频为基础,结合短时特征和梅尔倒频谱系数作为咳嗽特征:该方法的准确率、灵敏度、特异性和 F1 分数分别为 93.24%、97.58%、86.97% 和 94.47%,Kappa 值为 0.9209,60 秒语音片段的平均计数误差为 0.46 计数,平均运行时间为 2.80 ± 2.27 秒:该方法在咳嗽片段灵敏度的阈值和特征值方面改进了双阈值方法,在准确性、实时性和运算速度方面都有更好的表现,可应用于运算能力有限的小型便携设备的咳嗽实时计数和监测。所开发的可穿戴便携式自动咳嗽计数装置及配套的计算机应用软件主机可实现对患者咳嗽情况的长期监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic cough counting method and system construction for portable devices.

Introduction: Cough is a common symptom of respiratory diseases, and prolonged monitoring of cough can help assist doctors in making judgments about patients' conditions, among which cough frequency is an indicator that characterizes the state of the patient's lungs. Therefore, the aim of this paper is to design an automatic cough counting system to monitor the number of coughs per minute for a long period of time.

Methods: In this paper, a complete cough counting process is proposed, including denoising, segment extraction, eigenvalue calculation, recognition, and counting process; and a wearable automatic cough counting device containing acquisition and reception software. The design and construction of the algorithm is based on realistically captured cough-containing audio from 50 patients, combined with short-time features, and Meier cepstrum coefficients as features characterizing the cough.

Results: The accuracy, sensitivity, specificity, and F1 score of the method were 93.24%, 97.58%, 86.97%, and 94.47%, respectively, with a Kappa value of 0.9209, an average counting error of 0.46 counts for a 60-s speech segment, and an average runtime of 2.80 ± 2.27 s.

Discussion: This method improves the double threshold method in terms of the threshold and eigenvalues of the cough segments' sensitivity and has better performance in terms of accuracy, real-time performance, and computing speed, which can be applied to real-time cough counting and monitoring in small portable devices with limited computing power. The developed wearable portable automatic cough counting device and the accompanying host computer software application can realize the long-term monitoring of patients' coughing condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信