Gopal V Velmurugan, Hemendra J Vekaria, Anika M S Hartz, Björn Bauer, W Brad Hubbard
{"title":"氧化应激改变了离体脑毛细血管中线粒体的稳态。","authors":"Gopal V Velmurugan, Hemendra J Vekaria, Anika M S Hartz, Björn Bauer, W Brad Hubbard","doi":"10.1186/s12987-024-00579-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neurovascular deficits and blood-brain barrier (BBB) dysfunction are major hallmarks of brain trauma and neurodegenerative diseases. Oxidative stress is a prominent contributor to neurovascular unit (NVU) dysfunction and can propagate BBB disruption. Oxidative damage results in an imbalance of mitochondrial homeostasis, which can further drive functional impairment of brain capillaries. To this end, we developed a method to track mitochondrial-related changes after oxidative stress in the context of neurovascular pathophysiology as a critical endophenotype of neurodegenerative diseases.</p><p><strong>Methods: </strong>To study brain capillary-specific mitochondrial function and dynamics in response to oxidative stress, we developed an ex vivo model in which we used isolated brain capillaries from transgenic mice that express dendra2 green specifically in mitochondria (mtD2g). Isolated brain capillaries were incubated with 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) or hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce oxidative stress through lipid peroxidation. Following the oxidative insult, mitochondrial bioenergetics were measured using the Seahorse XFe96 flux analyzer, and mitochondrial dynamics were measured using confocal microscopy with Imaris software.</p><p><strong>Results: </strong>We optimized brain capillary isolation with intact endothelial cell tight-junction and pericyte integrity. Further, we demonstrate consistency of the capillary isolation process and cellular enrichment of the isolated capillaries. Mitochondrial bioenergetics and morphology assessments were optimized in isolated brain capillaries. Finally, we found that oxidative stress significantly decreased mitochondrial respiration and altered mitochondrial morphology in brain capillaries, including mitochondrial volume and count.</p><p><strong>Conclusions: </strong>Following ex vivo isolation of brain capillaries, we confirmed the stability of mitochondrial parameters, demonstrating the feasibility of this newly developed platform. We also demonstrated that oxidative stress has profound effects on mitochondrial homeostasis in isolated brain capillaries. This novel method can be used to evaluate pharmacological interventions to target oxidative stress or mitochondrial dysfunction in cerebral small vessel disease and neurovascular pathophysiology as major players in neurodegenerative disease.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"81"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries.\",\"authors\":\"Gopal V Velmurugan, Hemendra J Vekaria, Anika M S Hartz, Björn Bauer, W Brad Hubbard\",\"doi\":\"10.1186/s12987-024-00579-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neurovascular deficits and blood-brain barrier (BBB) dysfunction are major hallmarks of brain trauma and neurodegenerative diseases. Oxidative stress is a prominent contributor to neurovascular unit (NVU) dysfunction and can propagate BBB disruption. Oxidative damage results in an imbalance of mitochondrial homeostasis, which can further drive functional impairment of brain capillaries. To this end, we developed a method to track mitochondrial-related changes after oxidative stress in the context of neurovascular pathophysiology as a critical endophenotype of neurodegenerative diseases.</p><p><strong>Methods: </strong>To study brain capillary-specific mitochondrial function and dynamics in response to oxidative stress, we developed an ex vivo model in which we used isolated brain capillaries from transgenic mice that express dendra2 green specifically in mitochondria (mtD2g). Isolated brain capillaries were incubated with 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) or hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce oxidative stress through lipid peroxidation. Following the oxidative insult, mitochondrial bioenergetics were measured using the Seahorse XFe96 flux analyzer, and mitochondrial dynamics were measured using confocal microscopy with Imaris software.</p><p><strong>Results: </strong>We optimized brain capillary isolation with intact endothelial cell tight-junction and pericyte integrity. Further, we demonstrate consistency of the capillary isolation process and cellular enrichment of the isolated capillaries. Mitochondrial bioenergetics and morphology assessments were optimized in isolated brain capillaries. Finally, we found that oxidative stress significantly decreased mitochondrial respiration and altered mitochondrial morphology in brain capillaries, including mitochondrial volume and count.</p><p><strong>Conclusions: </strong>Following ex vivo isolation of brain capillaries, we confirmed the stability of mitochondrial parameters, demonstrating the feasibility of this newly developed platform. We also demonstrated that oxidative stress has profound effects on mitochondrial homeostasis in isolated brain capillaries. This novel method can be used to evaluate pharmacological interventions to target oxidative stress or mitochondrial dysfunction in cerebral small vessel disease and neurovascular pathophysiology as major players in neurodegenerative disease.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"21 1\",\"pages\":\"81\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00579-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00579-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries.
Background: Neurovascular deficits and blood-brain barrier (BBB) dysfunction are major hallmarks of brain trauma and neurodegenerative diseases. Oxidative stress is a prominent contributor to neurovascular unit (NVU) dysfunction and can propagate BBB disruption. Oxidative damage results in an imbalance of mitochondrial homeostasis, which can further drive functional impairment of brain capillaries. To this end, we developed a method to track mitochondrial-related changes after oxidative stress in the context of neurovascular pathophysiology as a critical endophenotype of neurodegenerative diseases.
Methods: To study brain capillary-specific mitochondrial function and dynamics in response to oxidative stress, we developed an ex vivo model in which we used isolated brain capillaries from transgenic mice that express dendra2 green specifically in mitochondria (mtD2g). Isolated brain capillaries were incubated with 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) or hydrogen peroxide (H2O2) to induce oxidative stress through lipid peroxidation. Following the oxidative insult, mitochondrial bioenergetics were measured using the Seahorse XFe96 flux analyzer, and mitochondrial dynamics were measured using confocal microscopy with Imaris software.
Results: We optimized brain capillary isolation with intact endothelial cell tight-junction and pericyte integrity. Further, we demonstrate consistency of the capillary isolation process and cellular enrichment of the isolated capillaries. Mitochondrial bioenergetics and morphology assessments were optimized in isolated brain capillaries. Finally, we found that oxidative stress significantly decreased mitochondrial respiration and altered mitochondrial morphology in brain capillaries, including mitochondrial volume and count.
Conclusions: Following ex vivo isolation of brain capillaries, we confirmed the stability of mitochondrial parameters, demonstrating the feasibility of this newly developed platform. We also demonstrated that oxidative stress has profound effects on mitochondrial homeostasis in isolated brain capillaries. This novel method can be used to evaluate pharmacological interventions to target oxidative stress or mitochondrial dysfunction in cerebral small vessel disease and neurovascular pathophysiology as major players in neurodegenerative disease.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).