Mengmeng Yu , Huilin Chen , Chen Chen , Can Zhao , Qingjun Zhou , Lixin Xie , Ting Wang
{"title":"高血糖导致的谷氨酰胺缺乏是糖尿病角膜内皮功能障碍的发病机制之一。","authors":"Mengmeng Yu , Huilin Chen , Chen Chen , Can Zhao , Qingjun Zhou , Lixin Xie , Ting Wang","doi":"10.1016/j.exer.2024.110124","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic mellitus (DM) causes various complications, including the corneal endothelial dysfunction that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused corneal endothelial dysfunction remains incomplete understood. Here we firstly screened and identified the glutamine contents of aqueous humor (AH) were significantly reduced in the type 2 diabetic patients and type 1 and type 2 diabetic mice. To explore the potential therapeutic effects of glutamine (Gln) supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pump function of cornea. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells (CECs) from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the Gln depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelium.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"249 ","pages":"Article 110124"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperglycemia-depleted glutamine contributes to the pathogenesis of diabetic corneal endothelial dysfunction\",\"authors\":\"Mengmeng Yu , Huilin Chen , Chen Chen , Can Zhao , Qingjun Zhou , Lixin Xie , Ting Wang\",\"doi\":\"10.1016/j.exer.2024.110124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic mellitus (DM) causes various complications, including the corneal endothelial dysfunction that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused corneal endothelial dysfunction remains incomplete understood. Here we firstly screened and identified the glutamine contents of aqueous humor (AH) were significantly reduced in the type 2 diabetic patients and type 1 and type 2 diabetic mice. To explore the potential therapeutic effects of glutamine (Gln) supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pump function of cornea. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells (CECs) from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the Gln depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelium.</div></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"249 \",\"pages\":\"Article 110124\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014483524003464\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524003464","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Hyperglycemia-depleted glutamine contributes to the pathogenesis of diabetic corneal endothelial dysfunction
Diabetic mellitus (DM) causes various complications, including the corneal endothelial dysfunction that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused corneal endothelial dysfunction remains incomplete understood. Here we firstly screened and identified the glutamine contents of aqueous humor (AH) were significantly reduced in the type 2 diabetic patients and type 1 and type 2 diabetic mice. To explore the potential therapeutic effects of glutamine (Gln) supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pump function of cornea. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells (CECs) from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the Gln depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelium.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.