Layla Jamal, Lisa Michelant, Stéphane Delanaud, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Tamara Baz, Véronique Bach, Brahim Selmaoui
{"title":"健康志愿者自主神经系统对 5G 首个部署频段(3.5 GHz)环境级暴露的反应。","authors":"Layla Jamal, Lisa Michelant, Stéphane Delanaud, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Tamara Baz, Véronique Bach, Brahim Selmaoui","doi":"10.1113/EP092083","DOIUrl":null,"url":null,"abstract":"<p><p>Following the global progressive deployment of 5G networks, considerable attention has focused on assessing their potential impact on human health. This study aims to investigate autonomous nervous system changes by exploring skin temperature and electrodermal activity (EDA) among 44 healthy young individuals of both sexes during and after exposure to 3.5 GHz antenna-emitted signals, with an electrical field intensity ranging from 1 to 2 V/m. The study employed a randomized, cross-over design with triple-blinding, encompassing both 'real' and 'sham' exposure sessions, separated by a maximum interval of 1 week. Each session comprised baseline, exposure and postexposure phases, resulting in the acquisition of seven runs. Each run initiated with a 150 s segment of EDA recordings stimulated by 10 repeated beeps. Subsequently, the collected data underwent continuous decomposition analysis, generating specific indicators assessed alongside standard metrics such as trough-to-peak measurements, global skin conductance and maximum positive peak deflection. Additionally, non-invasive, real-time skin temperature measurements were conducted to evaluate specific anatomical points (hand, head and neck). The study suggests that exposure to 3.5 GHz signals may potentially affect head and neck temperature, indicating a slight increase in this parameter. Furthermore, there was a minimal modulation of certain electrodermal metrics after the exposure, suggesting a potentially faster physiological response to auditory stimulation. However, while the results are significant, they remain within the normal physiological range and could be a consequence of an uncontrolled variable. Given the preliminary nature of this pilot study, further research is needed to confirm the effects of 5G exposure.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous nervous system responses to environmental-level exposure to 5G's first deployed band (3.5 GHz) in healthy human volunteers.\",\"authors\":\"Layla Jamal, Lisa Michelant, Stéphane Delanaud, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Tamara Baz, Véronique Bach, Brahim Selmaoui\",\"doi\":\"10.1113/EP092083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Following the global progressive deployment of 5G networks, considerable attention has focused on assessing their potential impact on human health. This study aims to investigate autonomous nervous system changes by exploring skin temperature and electrodermal activity (EDA) among 44 healthy young individuals of both sexes during and after exposure to 3.5 GHz antenna-emitted signals, with an electrical field intensity ranging from 1 to 2 V/m. The study employed a randomized, cross-over design with triple-blinding, encompassing both 'real' and 'sham' exposure sessions, separated by a maximum interval of 1 week. Each session comprised baseline, exposure and postexposure phases, resulting in the acquisition of seven runs. Each run initiated with a 150 s segment of EDA recordings stimulated by 10 repeated beeps. Subsequently, the collected data underwent continuous decomposition analysis, generating specific indicators assessed alongside standard metrics such as trough-to-peak measurements, global skin conductance and maximum positive peak deflection. Additionally, non-invasive, real-time skin temperature measurements were conducted to evaluate specific anatomical points (hand, head and neck). The study suggests that exposure to 3.5 GHz signals may potentially affect head and neck temperature, indicating a slight increase in this parameter. Furthermore, there was a minimal modulation of certain electrodermal metrics after the exposure, suggesting a potentially faster physiological response to auditory stimulation. However, while the results are significant, they remain within the normal physiological range and could be a consequence of an uncontrolled variable. Given the preliminary nature of this pilot study, further research is needed to confirm the effects of 5G exposure.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092083\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Autonomous nervous system responses to environmental-level exposure to 5G's first deployed band (3.5 GHz) in healthy human volunteers.
Following the global progressive deployment of 5G networks, considerable attention has focused on assessing their potential impact on human health. This study aims to investigate autonomous nervous system changes by exploring skin temperature and electrodermal activity (EDA) among 44 healthy young individuals of both sexes during and after exposure to 3.5 GHz antenna-emitted signals, with an electrical field intensity ranging from 1 to 2 V/m. The study employed a randomized, cross-over design with triple-blinding, encompassing both 'real' and 'sham' exposure sessions, separated by a maximum interval of 1 week. Each session comprised baseline, exposure and postexposure phases, resulting in the acquisition of seven runs. Each run initiated with a 150 s segment of EDA recordings stimulated by 10 repeated beeps. Subsequently, the collected data underwent continuous decomposition analysis, generating specific indicators assessed alongside standard metrics such as trough-to-peak measurements, global skin conductance and maximum positive peak deflection. Additionally, non-invasive, real-time skin temperature measurements were conducted to evaluate specific anatomical points (hand, head and neck). The study suggests that exposure to 3.5 GHz signals may potentially affect head and neck temperature, indicating a slight increase in this parameter. Furthermore, there was a minimal modulation of certain electrodermal metrics after the exposure, suggesting a potentially faster physiological response to auditory stimulation. However, while the results are significant, they remain within the normal physiological range and could be a consequence of an uncontrolled variable. Given the preliminary nature of this pilot study, further research is needed to confirm the effects of 5G exposure.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.