学习调节先天嗅觉行为需要轨道额叶皮层

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2024-10-21 Print Date: 2024-10-01 DOI:10.1523/ENEURO.0343-24.2024
Kiana Miyamoto, Jeremy Stark, Mayuri Kathrotia, Amanda Luu, Joelle Victoriano, Chung Lung Chan, Donghyung Lee, Cory M Root
{"title":"学习调节先天嗅觉行为需要轨道额叶皮层","authors":"Kiana Miyamoto, Jeremy Stark, Mayuri Kathrotia, Amanda Luu, Joelle Victoriano, Chung Lung Chan, Donghyung Lee, Cory M Root","doi":"10.1523/ENEURO.0343-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"11 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493560/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior.\",\"authors\":\"Kiana Miyamoto, Jeremy Stark, Mayuri Kathrotia, Amanda Luu, Joelle Victoriano, Chung Lung Chan, Donghyung Lee, Cory M Root\",\"doi\":\"10.1523/ENEURO.0343-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493560/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0343-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0343-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

动物在进化过程中对社交、食物和捕食者气味等线索产生了先天反应。在自然环境中,动物面临的选择涉及风险与回报之间的平衡,在这种情况下,与生俱来的意义可能与内在需求相悖。通过学习更新线索价值的能力对于驾驭不断变化和不确定的环境至关重要。然而,哺乳动物参与这种调节的机制还不十分明确。我们建立了一种新的嗅觉试验,让口渴的小鼠在觅食时选择厌恶的气味而不是吸引人的气味,从而克服它们对气味的先天行为反应。小鼠天生喜欢有吸引力的气味而不是厌恶的气味。然而,降低吸引力气味端口出现水的概率会导致小鼠更喜欢厌恶气味端口,这反映了小鼠通过学习推翻了对气味的先天反应。眶额皮层(OFC)是一个四阶嗅觉脑区,参与灵活的价值联想,其行为相关输出贯穿整个边缘系统。我们进行了光遗传学和化学遗传学沉默实验,结果表明眶额皮层对于这种对气味的先天厌恶的学习调节是必要的。此外,我们还描述了气味诱发的 c-fos 在学习小鼠和对照小鼠中的表达,发现纹状体末端床核、外侧隔膜、中央和内侧杏仁核的活动受到显著抑制。这些研究结果表明,学习型小鼠的先天性行为被学习型小鼠所覆盖,而学习型小鼠的先天性行为则被学习型小鼠所覆盖,并且学习型小鼠可能向边缘结构发出信号,以调节先天性小鼠对气味的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior.

Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信