学习调节先天嗅觉行为需要轨道额叶皮层

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2024-10-21 Print Date: 2024-10-01 DOI:10.1523/ENEURO.0343-24.2024
Kiana Miyamoto, Jeremy Stark, Mayuri Kathrotia, Amanda Luu, Joelle Victoriano, Chung Lung Chan, Donghyung Lee, Cory M Root
{"title":"学习调节先天嗅觉行为需要轨道额叶皮层","authors":"Kiana Miyamoto, Jeremy Stark, Mayuri Kathrotia, Amanda Luu, Joelle Victoriano, Chung Lung Chan, Donghyung Lee, Cory M Root","doi":"10.1523/ENEURO.0343-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior.\",\"authors\":\"Kiana Miyamoto, Jeremy Stark, Mayuri Kathrotia, Amanda Luu, Joelle Victoriano, Chung Lung Chan, Donghyung Lee, Cory M Root\",\"doi\":\"10.1523/ENEURO.0343-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0343-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0343-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior.

Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信