Yuxian Li, Ke Hu, Jie Li, Xirong Yang, Xiuyu Wu, Qian Liu, Yuefu Chen, Yan Ding, Lingli Liu, Qiansheng Yang, Guangwei Wang
{"title":"四羟基二苯乙烯葡萄糖苷通过促进 USP10 介导的 YBX1 稳定性,促进有丝分裂并改善脑缺血再灌注后的神经元损伤。","authors":"Yuxian Li, Ke Hu, Jie Li, Xirong Yang, Xiuyu Wu, Qian Liu, Yuefu Chen, Yan Ding, Lingli Liu, Qiansheng Yang, Guangwei Wang","doi":"10.1523/ENEURO.0269-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrahydroxy stilbene glucoside (TSG) from <i>Polygonum multiflorum</i> exerts neuroprotective effects after ischemic stroke. We explored whether TSG improved ischemic stroke injury via PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Oxygen glucose deprivation/reoxygenation (OGD/R) in vitro model and middle cerebral artery occlusion (MCAO) rat model were established. Cerebral injury was assessed by neurological score, hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and brain water content. Apoptosis, cell viability, and mitochondrial membrane potential were assessed by flow cytometry, cell counting kit-8, and JC-1 staining, respectively. Colocalization of LC3-labeled autophagosomes with lysosome-associated membrane glycoprotein 2-labeled lysosomes or translocase of outer mitochondrial membrane 20-labeled mitochondria was observed with fluorescence microscopy. The ubiquitination level was determined using ubiquitination assay. The interaction between molecules was validated by coimmunoprecipitation and glutathione <i>S</i>-transferase pull-down. We found that TSG promoted mitophagy and improved cerebral ischemia/reperfusion damage in MCAO rats. In OGD/R-subjected neurons, TSG promoted mitophagy, repressed neuronal apoptosis, upregulated Y-box binding protein-1 (YBX1), and activated PINK1/Parkin signaling. TSG upregulated ubiquitin-specific peptidase 10 (USP10) to elevate YBX1 protein. Furthermore, USP10 inhibited ubiquitination-dependent YBX1 degradation. <i>USP10</i> overexpression activated PINK1/Parkin signaling and promoted mitophagy, which were reversed by <i>YBX1</i> knockdown. Moreover, TSG upregulated USP10 to promote mitophagy and inhibited neuronal apoptosis. Collectively, TSG facilitated PINK1/Parkin pathway-mediated mitophagy by upregulating USP10/YBX1 axis to ameliorate ischemic stroke.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tetrahydroxy Stilbene Glucoside Promotes Mitophagy and Ameliorates Neuronal Injury after Cerebral Ischemia Reperfusion via Promoting USP10-Mediated YBX1 Stability.\",\"authors\":\"Yuxian Li, Ke Hu, Jie Li, Xirong Yang, Xiuyu Wu, Qian Liu, Yuefu Chen, Yan Ding, Lingli Liu, Qiansheng Yang, Guangwei Wang\",\"doi\":\"10.1523/ENEURO.0269-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetrahydroxy stilbene glucoside (TSG) from <i>Polygonum multiflorum</i> exerts neuroprotective effects after ischemic stroke. We explored whether TSG improved ischemic stroke injury via PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Oxygen glucose deprivation/reoxygenation (OGD/R) in vitro model and middle cerebral artery occlusion (MCAO) rat model were established. Cerebral injury was assessed by neurological score, hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and brain water content. Apoptosis, cell viability, and mitochondrial membrane potential were assessed by flow cytometry, cell counting kit-8, and JC-1 staining, respectively. Colocalization of LC3-labeled autophagosomes with lysosome-associated membrane glycoprotein 2-labeled lysosomes or translocase of outer mitochondrial membrane 20-labeled mitochondria was observed with fluorescence microscopy. The ubiquitination level was determined using ubiquitination assay. The interaction between molecules was validated by coimmunoprecipitation and glutathione <i>S</i>-transferase pull-down. We found that TSG promoted mitophagy and improved cerebral ischemia/reperfusion damage in MCAO rats. In OGD/R-subjected neurons, TSG promoted mitophagy, repressed neuronal apoptosis, upregulated Y-box binding protein-1 (YBX1), and activated PINK1/Parkin signaling. TSG upregulated ubiquitin-specific peptidase 10 (USP10) to elevate YBX1 protein. Furthermore, USP10 inhibited ubiquitination-dependent YBX1 degradation. <i>USP10</i> overexpression activated PINK1/Parkin signaling and promoted mitophagy, which were reversed by <i>YBX1</i> knockdown. Moreover, TSG upregulated USP10 to promote mitophagy and inhibited neuronal apoptosis. Collectively, TSG facilitated PINK1/Parkin pathway-mediated mitophagy by upregulating USP10/YBX1 axis to ameliorate ischemic stroke.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0269-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0269-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Tetrahydroxy Stilbene Glucoside Promotes Mitophagy and Ameliorates Neuronal Injury after Cerebral Ischemia Reperfusion via Promoting USP10-Mediated YBX1 Stability.
Tetrahydroxy stilbene glucoside (TSG) from Polygonum multiflorum exerts neuroprotective effects after ischemic stroke. We explored whether TSG improved ischemic stroke injury via PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Oxygen glucose deprivation/reoxygenation (OGD/R) in vitro model and middle cerebral artery occlusion (MCAO) rat model were established. Cerebral injury was assessed by neurological score, hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and brain water content. Apoptosis, cell viability, and mitochondrial membrane potential were assessed by flow cytometry, cell counting kit-8, and JC-1 staining, respectively. Colocalization of LC3-labeled autophagosomes with lysosome-associated membrane glycoprotein 2-labeled lysosomes or translocase of outer mitochondrial membrane 20-labeled mitochondria was observed with fluorescence microscopy. The ubiquitination level was determined using ubiquitination assay. The interaction between molecules was validated by coimmunoprecipitation and glutathione S-transferase pull-down. We found that TSG promoted mitophagy and improved cerebral ischemia/reperfusion damage in MCAO rats. In OGD/R-subjected neurons, TSG promoted mitophagy, repressed neuronal apoptosis, upregulated Y-box binding protein-1 (YBX1), and activated PINK1/Parkin signaling. TSG upregulated ubiquitin-specific peptidase 10 (USP10) to elevate YBX1 protein. Furthermore, USP10 inhibited ubiquitination-dependent YBX1 degradation. USP10 overexpression activated PINK1/Parkin signaling and promoted mitophagy, which were reversed by YBX1 knockdown. Moreover, TSG upregulated USP10 to promote mitophagy and inhibited neuronal apoptosis. Collectively, TSG facilitated PINK1/Parkin pathway-mediated mitophagy by upregulating USP10/YBX1 axis to ameliorate ischemic stroke.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.