Ana P Cuzziol Boccioni, Rafael C Lajmanovich, Andrés M Attademo, German Lener, Carlos R Lien-Medrano, María Fernanda Simoniello, Maria Rosa Repetti, Paola M Peltzer
{"title":"两栖动物幼虫体内的鸡尾酒杀虫剂毒性:了解农业活动对阿根廷萨拉多河流域水生生态系统的影响。","authors":"Ana P Cuzziol Boccioni, Rafael C Lajmanovich, Andrés M Attademo, German Lener, Carlos R Lien-Medrano, María Fernanda Simoniello, Maria Rosa Repetti, Paola M Peltzer","doi":"10.1080/01480545.2024.2412023","DOIUrl":null,"url":null,"abstract":"<p><p>Aquatic communities are increasingly exposed to complex mixtures of contaminants, mainly pesticides due to the impact of agricultural activity. The aim of this study was to evaluate the toxicity of an eight-pesticide cocktail on larvae of the South American common toad, <i>Rinella arenarum</i>. The cocktail represents a realistic mixture of insecticides (cypermethrin, chlorpyrifos and lambda-cyhalothrin), herbicides (glyphosate, glufosinate ammonium, prometryn and metolachlor), and a fungicide (pyraclostrobin) previously found in aquatic organisms (<i>Prochilodus lineatus</i>) from the Salado River Basin, an area with strong agricultural pressure. Computational simulations through the Density Functional Tight-Binding method indicated a strong spontaneous trend toward the formation of the cocktail, suggesting that it may act as a novel xenobiotic entity in the environment. The cocktail effects were evaluated in early-developing and premetamorphic larvae, at feasible concentrations found in real scenarios. The mixture led to high mortality and teratogenicity in early-developing larvae. Premetamorphic larvae showed endocrine disruption, oxidative stress, and impairments in detoxification and hepatic functioning. Neurotoxicity, genotoxicity, cardiotoxicity and high mortality under stress conditions were also observed in exposed larvae. This novel evaluation highlights the ecotoxicological risk for aquatic organisms exposed to complex mixtures and underscores the need to consider cocktail effects in studies regarding ecosystems health.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-19"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity of pesticide cocktails in amphibian larvae: understanding the impact of agricultural activity on aquatic ecosystems in the Salado River basin, Argentina.\",\"authors\":\"Ana P Cuzziol Boccioni, Rafael C Lajmanovich, Andrés M Attademo, German Lener, Carlos R Lien-Medrano, María Fernanda Simoniello, Maria Rosa Repetti, Paola M Peltzer\",\"doi\":\"10.1080/01480545.2024.2412023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aquatic communities are increasingly exposed to complex mixtures of contaminants, mainly pesticides due to the impact of agricultural activity. The aim of this study was to evaluate the toxicity of an eight-pesticide cocktail on larvae of the South American common toad, <i>Rinella arenarum</i>. The cocktail represents a realistic mixture of insecticides (cypermethrin, chlorpyrifos and lambda-cyhalothrin), herbicides (glyphosate, glufosinate ammonium, prometryn and metolachlor), and a fungicide (pyraclostrobin) previously found in aquatic organisms (<i>Prochilodus lineatus</i>) from the Salado River Basin, an area with strong agricultural pressure. Computational simulations through the Density Functional Tight-Binding method indicated a strong spontaneous trend toward the formation of the cocktail, suggesting that it may act as a novel xenobiotic entity in the environment. The cocktail effects were evaluated in early-developing and premetamorphic larvae, at feasible concentrations found in real scenarios. The mixture led to high mortality and teratogenicity in early-developing larvae. Premetamorphic larvae showed endocrine disruption, oxidative stress, and impairments in detoxification and hepatic functioning. Neurotoxicity, genotoxicity, cardiotoxicity and high mortality under stress conditions were also observed in exposed larvae. This novel evaluation highlights the ecotoxicological risk for aquatic organisms exposed to complex mixtures and underscores the need to consider cocktail effects in studies regarding ecosystems health.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2412023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2412023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Toxicity of pesticide cocktails in amphibian larvae: understanding the impact of agricultural activity on aquatic ecosystems in the Salado River basin, Argentina.
Aquatic communities are increasingly exposed to complex mixtures of contaminants, mainly pesticides due to the impact of agricultural activity. The aim of this study was to evaluate the toxicity of an eight-pesticide cocktail on larvae of the South American common toad, Rinella arenarum. The cocktail represents a realistic mixture of insecticides (cypermethrin, chlorpyrifos and lambda-cyhalothrin), herbicides (glyphosate, glufosinate ammonium, prometryn and metolachlor), and a fungicide (pyraclostrobin) previously found in aquatic organisms (Prochilodus lineatus) from the Salado River Basin, an area with strong agricultural pressure. Computational simulations through the Density Functional Tight-Binding method indicated a strong spontaneous trend toward the formation of the cocktail, suggesting that it may act as a novel xenobiotic entity in the environment. The cocktail effects were evaluated in early-developing and premetamorphic larvae, at feasible concentrations found in real scenarios. The mixture led to high mortality and teratogenicity in early-developing larvae. Premetamorphic larvae showed endocrine disruption, oxidative stress, and impairments in detoxification and hepatic functioning. Neurotoxicity, genotoxicity, cardiotoxicity and high mortality under stress conditions were also observed in exposed larvae. This novel evaluation highlights the ecotoxicological risk for aquatic organisms exposed to complex mixtures and underscores the need to consider cocktail effects in studies regarding ecosystems health.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.