Sylvia Cheung, Slade A Loutet, Sarah Zaytsoff, Filip Van Petegem, Loc H Tran, Hamlet Abnousi
{"title":"与 PirA 或 PirB 结合的纳米抗体可保护南美白对虾免受急性肝胰腺坏死病毒素的侵害。","authors":"Sylvia Cheung, Slade A Loutet, Sarah Zaytsoff, Filip Van Petegem, Loc H Tran, Hamlet Abnousi","doi":"10.3354/dao03817","DOIUrl":null,"url":null,"abstract":"<p><p>Acute hepatopancreatic necrosis disease (AHPND) is a devastating shrimp disease caused by a binary toxin, PirAB, produced by Vibrio parahaemolyticus and other closely related bacteria. To address AHPND, over 300 unique single-domain antibodies (also known as nanobodies) derived from the VHH domains of Lama glama heavy-chain-only antibodies were raised against either PirA or PirB and characterized. Nanobodies were shortlisted based on their affinities for either PirA or PirB, their relative stability in intestinal fluids, and their ability to reduce PirAB-induced death in brine shrimp Artemia salina. From these data, a subset of nanobodies was tested for their ability to reduce AHPND in whiteleg shrimp Penaeus vannamei, and nanobodies targeting either PirA or PirB provided significant disease protection to whiteleg shrimp. These results show that nanobodies can be a new option for shrimp farmers to reduce or eliminate the impact of AHPND on their operations.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"160 ","pages":"7-12"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PirA- or PirB-binding nanobodies can protect whiteleg shrimp from the acute hepatopancreatic necrosis disease toxin.\",\"authors\":\"Sylvia Cheung, Slade A Loutet, Sarah Zaytsoff, Filip Van Petegem, Loc H Tran, Hamlet Abnousi\",\"doi\":\"10.3354/dao03817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute hepatopancreatic necrosis disease (AHPND) is a devastating shrimp disease caused by a binary toxin, PirAB, produced by Vibrio parahaemolyticus and other closely related bacteria. To address AHPND, over 300 unique single-domain antibodies (also known as nanobodies) derived from the VHH domains of Lama glama heavy-chain-only antibodies were raised against either PirA or PirB and characterized. Nanobodies were shortlisted based on their affinities for either PirA or PirB, their relative stability in intestinal fluids, and their ability to reduce PirAB-induced death in brine shrimp Artemia salina. From these data, a subset of nanobodies was tested for their ability to reduce AHPND in whiteleg shrimp Penaeus vannamei, and nanobodies targeting either PirA or PirB provided significant disease protection to whiteleg shrimp. These results show that nanobodies can be a new option for shrimp farmers to reduce or eliminate the impact of AHPND on their operations.</p>\",\"PeriodicalId\":11252,\"journal\":{\"name\":\"Diseases of aquatic organisms\",\"volume\":\"160 \",\"pages\":\"7-12\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diseases of aquatic organisms\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/dao03817\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03817","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
PirA- or PirB-binding nanobodies can protect whiteleg shrimp from the acute hepatopancreatic necrosis disease toxin.
Acute hepatopancreatic necrosis disease (AHPND) is a devastating shrimp disease caused by a binary toxin, PirAB, produced by Vibrio parahaemolyticus and other closely related bacteria. To address AHPND, over 300 unique single-domain antibodies (also known as nanobodies) derived from the VHH domains of Lama glama heavy-chain-only antibodies were raised against either PirA or PirB and characterized. Nanobodies were shortlisted based on their affinities for either PirA or PirB, their relative stability in intestinal fluids, and their ability to reduce PirAB-induced death in brine shrimp Artemia salina. From these data, a subset of nanobodies was tested for their ability to reduce AHPND in whiteleg shrimp Penaeus vannamei, and nanobodies targeting either PirA or PirB provided significant disease protection to whiteleg shrimp. These results show that nanobodies can be a new option for shrimp farmers to reduce or eliminate the impact of AHPND on their operations.
期刊介绍:
DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically:
-Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens
-Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)-
Diseases due to internal circumstances (innate, idiopathic, genetic)-
Diseases due to proliferative disorders (neoplasms)-
Disease diagnosis, treatment and prevention-
Molecular aspects of diseases-
Nutritional disorders-
Stress and physical injuries-
Epidemiology/epizootiology-
Parasitology-
Toxicology-
Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)-
Diseases as indicators of humanity''s detrimental impact on nature-
Genomics, proteomics and metabolomics of disease-
Immunology and disease prevention-
Animal welfare-
Zoonosis