Khyati L Bharti, Parnas S Parmar, Bhavesh P Rathod, Sharmil N Anjirwala, Saurabh K Patel
{"title":"作为潜在药理实体的非融合嘧啶衍生物:综述。","authors":"Khyati L Bharti, Parnas S Parmar, Bhavesh P Rathod, Sharmil N Anjirwala, Saurabh K Patel","doi":"10.2174/0115680266317088240924205745","DOIUrl":null,"url":null,"abstract":"<p><p>Non-fused pyrimidine scaffold is a significant component for designing new drugs. The review emphasizes the pharmacological importance of non-fused pyrimidine-containing moieties based on the broad spectrum of activities such as antiprotozoal, antibacterial, antimycobacterial, anticancer, anti-inflammatory activity, and CNS depressant. Pyrimidine derivatives are fascinating entities that display biological activities for the treatment of cancer. It also highlights the tendency of non-fused pyrimidine derivatives to suppress cell growth by obstructing the activity of VCP, CDK-2, EGFR, ATR, EphB4 & EphA2, PDGF as well as inhibitory action towards different cell lines such as MCF-7, HeLa, NCI/ADR-RES, NCIH23, HOP-92, HCT-116, OV-3, MOLT-4, PC-3, MDA-MB-231, MALME-3M, K562 and Bcr-Abl. The review details the importance of morpholine, piperidine, and pyrrolidine ring substitutions on pyrimidine moiety as well as the role of H-bonding and amino linkage along with antibacterial activity due to the presence of pleuromutilin and tetrazole molecules. Researchers were motivated to develop and enhance the non-fused pyrimidine scaffold to uncover novel medicines by reading this review article.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-fused Pyrimidine Derivatives as Potential Pharmacological Entities: A Review.\",\"authors\":\"Khyati L Bharti, Parnas S Parmar, Bhavesh P Rathod, Sharmil N Anjirwala, Saurabh K Patel\",\"doi\":\"10.2174/0115680266317088240924205745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-fused pyrimidine scaffold is a significant component for designing new drugs. The review emphasizes the pharmacological importance of non-fused pyrimidine-containing moieties based on the broad spectrum of activities such as antiprotozoal, antibacterial, antimycobacterial, anticancer, anti-inflammatory activity, and CNS depressant. Pyrimidine derivatives are fascinating entities that display biological activities for the treatment of cancer. It also highlights the tendency of non-fused pyrimidine derivatives to suppress cell growth by obstructing the activity of VCP, CDK-2, EGFR, ATR, EphB4 & EphA2, PDGF as well as inhibitory action towards different cell lines such as MCF-7, HeLa, NCI/ADR-RES, NCIH23, HOP-92, HCT-116, OV-3, MOLT-4, PC-3, MDA-MB-231, MALME-3M, K562 and Bcr-Abl. The review details the importance of morpholine, piperidine, and pyrrolidine ring substitutions on pyrimidine moiety as well as the role of H-bonding and amino linkage along with antibacterial activity due to the presence of pleuromutilin and tetrazole molecules. Researchers were motivated to develop and enhance the non-fused pyrimidine scaffold to uncover novel medicines by reading this review article.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266317088240924205745\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266317088240924205745","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Non-fused Pyrimidine Derivatives as Potential Pharmacological Entities: A Review.
Non-fused pyrimidine scaffold is a significant component for designing new drugs. The review emphasizes the pharmacological importance of non-fused pyrimidine-containing moieties based on the broad spectrum of activities such as antiprotozoal, antibacterial, antimycobacterial, anticancer, anti-inflammatory activity, and CNS depressant. Pyrimidine derivatives are fascinating entities that display biological activities for the treatment of cancer. It also highlights the tendency of non-fused pyrimidine derivatives to suppress cell growth by obstructing the activity of VCP, CDK-2, EGFR, ATR, EphB4 & EphA2, PDGF as well as inhibitory action towards different cell lines such as MCF-7, HeLa, NCI/ADR-RES, NCIH23, HOP-92, HCT-116, OV-3, MOLT-4, PC-3, MDA-MB-231, MALME-3M, K562 and Bcr-Abl. The review details the importance of morpholine, piperidine, and pyrrolidine ring substitutions on pyrimidine moiety as well as the role of H-bonding and amino linkage along with antibacterial activity due to the presence of pleuromutilin and tetrazole molecules. Researchers were motivated to develop and enhance the non-fused pyrimidine scaffold to uncover novel medicines by reading this review article.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.