皮肤美容的计算研究:皮肤化妆品中的计算研究:针对各种皮肤病蛋白质的治疗药物的硅学发现。

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Lamiae El Bouamri, Mohammed Bouachrine, Samir Chtita
{"title":"皮肤美容的计算研究:皮肤化妆品中的计算研究:针对各种皮肤病蛋白质的治疗药物的硅学发现。","authors":"Lamiae El Bouamri, Mohammed Bouachrine, Samir Chtita","doi":"10.2174/0115680266337405240926114604","DOIUrl":null,"url":null,"abstract":"<p><p>Healthy skin is essential for balanced health. Currently, skin diseases are considered a major global health issue, impacting individuals of all ages. Skin conditions can vary broadly, ranging from common issues like acne and eczema to more serious diseases such as psoriasis, melanoma, and other types of skin cancer. In recent years, computational methods have appeared as powerful tools for explaining the lurking mechanisms of skin diseases and the advancement of the discovery regarding updated therapeutics. This review spotlights the notable researches that have been performed in using computational approaches such as virtual screening, molecular modelling, and molecular dynamics simulations to discover potential treatments for dermatological conditions such as eczema, psoriasis, acne vulgaris, skin cancer, and tyrosinase-related disorders. Moreover, using in silico methods, researchers have explored the molecular interactions between cosmetic actives and skin targets, providing insights into the binding affinities, stability, and efficacy of these compounds. This computational exploration allows the identification of potential off-target effects and toxicity profiles, ensuring that only the most promising candidates proceed to clinical testing. In addition, the use of molecular dynamics simulations helps to understand conformational changes and interaction dynamics over time, further refining the selection of effective cosmetic actives. Overall, the integration of computational chemistry into dermo-cosmetic research has immense potential to accelerate the discovery and development of innovative treatments to improve skin health and address dermatological concerns.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Studies in Dermo-cosmetics: In silico Discovery of Therapeutic Agents Targeting a Variety of Proteins for Skin Diseases.\",\"authors\":\"Lamiae El Bouamri, Mohammed Bouachrine, Samir Chtita\",\"doi\":\"10.2174/0115680266337405240926114604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Healthy skin is essential for balanced health. Currently, skin diseases are considered a major global health issue, impacting individuals of all ages. Skin conditions can vary broadly, ranging from common issues like acne and eczema to more serious diseases such as psoriasis, melanoma, and other types of skin cancer. In recent years, computational methods have appeared as powerful tools for explaining the lurking mechanisms of skin diseases and the advancement of the discovery regarding updated therapeutics. This review spotlights the notable researches that have been performed in using computational approaches such as virtual screening, molecular modelling, and molecular dynamics simulations to discover potential treatments for dermatological conditions such as eczema, psoriasis, acne vulgaris, skin cancer, and tyrosinase-related disorders. Moreover, using in silico methods, researchers have explored the molecular interactions between cosmetic actives and skin targets, providing insights into the binding affinities, stability, and efficacy of these compounds. This computational exploration allows the identification of potential off-target effects and toxicity profiles, ensuring that only the most promising candidates proceed to clinical testing. In addition, the use of molecular dynamics simulations helps to understand conformational changes and interaction dynamics over time, further refining the selection of effective cosmetic actives. Overall, the integration of computational chemistry into dermo-cosmetic research has immense potential to accelerate the discovery and development of innovative treatments to improve skin health and address dermatological concerns.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266337405240926114604\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266337405240926114604","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

健康的皮肤对平衡健康至关重要。目前,皮肤病被认为是一个重大的全球性健康问题,影响着各个年龄段的人。皮肤病种类繁多,从痤疮和湿疹等常见问题到牛皮癣、黑色素瘤和其他类型皮肤癌等更严重的疾病,不一而足。近年来,计算方法已成为解释皮肤病潜伏机制和促进发现最新疗法的有力工具。本综述重点介绍了利用虚拟筛选、分子建模和分子动力学模拟等计算方法发现湿疹、银屑病、寻常痤疮、皮肤癌和酪氨酸酶相关疾病等皮肤病潜在治疗方法的著名研究。此外,研究人员还利用硅学方法探索了化妆品活性成分与皮肤靶点之间的分子相互作用,从而深入了解了这些化合物的结合亲和力、稳定性和功效。这种计算探索可以识别潜在的脱靶效应和毒性特征,确保只有最有前途的候选化合物才能进入临床测试。此外,使用分子动力学模拟有助于了解构象变化和相互作用随时间的动态变化,从而进一步完善有效化妆品活性成分的选择。总之,将计算化学融入皮肤美容研究具有巨大的潜力,可以加快创新疗法的发现和开发,从而改善皮肤健康,解决皮肤病问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Studies in Dermo-cosmetics: In silico Discovery of Therapeutic Agents Targeting a Variety of Proteins for Skin Diseases.

Healthy skin is essential for balanced health. Currently, skin diseases are considered a major global health issue, impacting individuals of all ages. Skin conditions can vary broadly, ranging from common issues like acne and eczema to more serious diseases such as psoriasis, melanoma, and other types of skin cancer. In recent years, computational methods have appeared as powerful tools for explaining the lurking mechanisms of skin diseases and the advancement of the discovery regarding updated therapeutics. This review spotlights the notable researches that have been performed in using computational approaches such as virtual screening, molecular modelling, and molecular dynamics simulations to discover potential treatments for dermatological conditions such as eczema, psoriasis, acne vulgaris, skin cancer, and tyrosinase-related disorders. Moreover, using in silico methods, researchers have explored the molecular interactions between cosmetic actives and skin targets, providing insights into the binding affinities, stability, and efficacy of these compounds. This computational exploration allows the identification of potential off-target effects and toxicity profiles, ensuring that only the most promising candidates proceed to clinical testing. In addition, the use of molecular dynamics simulations helps to understand conformational changes and interaction dynamics over time, further refining the selection of effective cosmetic actives. Overall, the integration of computational chemistry into dermo-cosmetic research has immense potential to accelerate the discovery and development of innovative treatments to improve skin health and address dermatological concerns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信