Ravi Shankar, Manish Kumar, Prabhat Kumar Upadhyay
{"title":"通过新型脂质囊泡提高苯肾上腺素皮肤渗透效率的比较研究:预防化疗引起的脱发管理的一种可行方法。","authors":"Ravi Shankar, Manish Kumar, Prabhat Kumar Upadhyay","doi":"10.2174/0113892010336809240815050316","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chemotherapy-induced alopecia (CIA) significantly impacts patients' emotional and psychological well-being and treatment regimen. Phenylephrine, a topical vasoconstrictor, can potentially reduce hair loss by limiting chemotherapy drug delivery to hair follicles. However, effective delivery of Phenylephrine through the skin remains challenging. This study investigates lipid vesicles as delivery vehicles to enhance Phenylephrine's skin permeation and sustained release due to their biocompatibility and encapsulation capabilities.</p><p><strong>Objective: </strong>This study aimed to formulate and compare different lipid vesicles of Phenylephrine HCl for enhanced permeation through the skin for deep dermal delivery with sustained release of the drug so as to achieve local vasoconstriction.</p><p><strong>Methods: </strong>Phenylephrine-loaded ethosomes, invasomes, and transfersomes were prepared and characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE %). These lipid vesicles were incorporated into hydrogels to facilitate sustained drug release to deep dermal layers where they could target local vasculature and cause vasoconstriction. The prepared vesicular gels were evaluated for various permeation parameters.</p><p><strong>Results: </strong>The entrapment efficiencies of the developed vesicles ranged from 49.51 ± 3.25% to 69.09 ± 2.32%, with vesicle sizes ranging from 162.5 ± 5.21 nm to 321.32 ± 3.75 nm. Statistical analysis revealed significantly higher flux values (Jss, μg/cm2 h) of 0.6251, 0.6314, and 0.4075 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, compared to plain gel (0.1254) (p < 0.005). The enhancement factors were 4.9848, 5.0350, and 3.2496 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, indicating superior permeation abilities of ethosomal and invasomal formulations.</p><p><strong>Conclusion: </strong>The results demonstrate that ethosomal and invasomal formulations were efficient in delivering the drug to deep dermal layers of skin in a sustained manner. These findings suggest that these Lipidic vesicles would be able to target the local vasoconstrictor to vasculature, causing reduced hair loss by limiting chemotherapy drug delivery to hair follicles and managing chemotherapy-induced alopecia.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study on Enhanced Skin Permeation Efficiency of Phenylephrine via Novel Lipid Vesicles: A Promising Approach in Preventing Chemotherapy-Induced Alopecia Management.\",\"authors\":\"Ravi Shankar, Manish Kumar, Prabhat Kumar Upadhyay\",\"doi\":\"10.2174/0113892010336809240815050316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chemotherapy-induced alopecia (CIA) significantly impacts patients' emotional and psychological well-being and treatment regimen. Phenylephrine, a topical vasoconstrictor, can potentially reduce hair loss by limiting chemotherapy drug delivery to hair follicles. However, effective delivery of Phenylephrine through the skin remains challenging. This study investigates lipid vesicles as delivery vehicles to enhance Phenylephrine's skin permeation and sustained release due to their biocompatibility and encapsulation capabilities.</p><p><strong>Objective: </strong>This study aimed to formulate and compare different lipid vesicles of Phenylephrine HCl for enhanced permeation through the skin for deep dermal delivery with sustained release of the drug so as to achieve local vasoconstriction.</p><p><strong>Methods: </strong>Phenylephrine-loaded ethosomes, invasomes, and transfersomes were prepared and characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE %). These lipid vesicles were incorporated into hydrogels to facilitate sustained drug release to deep dermal layers where they could target local vasculature and cause vasoconstriction. The prepared vesicular gels were evaluated for various permeation parameters.</p><p><strong>Results: </strong>The entrapment efficiencies of the developed vesicles ranged from 49.51 ± 3.25% to 69.09 ± 2.32%, with vesicle sizes ranging from 162.5 ± 5.21 nm to 321.32 ± 3.75 nm. Statistical analysis revealed significantly higher flux values (Jss, μg/cm2 h) of 0.6251, 0.6314, and 0.4075 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, compared to plain gel (0.1254) (p < 0.005). The enhancement factors were 4.9848, 5.0350, and 3.2496 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, indicating superior permeation abilities of ethosomal and invasomal formulations.</p><p><strong>Conclusion: </strong>The results demonstrate that ethosomal and invasomal formulations were efficient in delivering the drug to deep dermal layers of skin in a sustained manner. These findings suggest that these Lipidic vesicles would be able to target the local vasoconstrictor to vasculature, causing reduced hair loss by limiting chemotherapy drug delivery to hair follicles and managing chemotherapy-induced alopecia.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010336809240815050316\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010336809240815050316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparative Study on Enhanced Skin Permeation Efficiency of Phenylephrine via Novel Lipid Vesicles: A Promising Approach in Preventing Chemotherapy-Induced Alopecia Management.
Background: Chemotherapy-induced alopecia (CIA) significantly impacts patients' emotional and psychological well-being and treatment regimen. Phenylephrine, a topical vasoconstrictor, can potentially reduce hair loss by limiting chemotherapy drug delivery to hair follicles. However, effective delivery of Phenylephrine through the skin remains challenging. This study investigates lipid vesicles as delivery vehicles to enhance Phenylephrine's skin permeation and sustained release due to their biocompatibility and encapsulation capabilities.
Objective: This study aimed to formulate and compare different lipid vesicles of Phenylephrine HCl for enhanced permeation through the skin for deep dermal delivery with sustained release of the drug so as to achieve local vasoconstriction.
Methods: Phenylephrine-loaded ethosomes, invasomes, and transfersomes were prepared and characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE %). These lipid vesicles were incorporated into hydrogels to facilitate sustained drug release to deep dermal layers where they could target local vasculature and cause vasoconstriction. The prepared vesicular gels were evaluated for various permeation parameters.
Results: The entrapment efficiencies of the developed vesicles ranged from 49.51 ± 3.25% to 69.09 ± 2.32%, with vesicle sizes ranging from 162.5 ± 5.21 nm to 321.32 ± 3.75 nm. Statistical analysis revealed significantly higher flux values (Jss, μg/cm2 h) of 0.6251, 0.6314, and 0.4075 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, compared to plain gel (0.1254) (p < 0.005). The enhancement factors were 4.9848, 5.0350, and 3.2496 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, indicating superior permeation abilities of ethosomal and invasomal formulations.
Conclusion: The results demonstrate that ethosomal and invasomal formulations were efficient in delivering the drug to deep dermal layers of skin in a sustained manner. These findings suggest that these Lipidic vesicles would be able to target the local vasoconstrictor to vasculature, causing reduced hair loss by limiting chemotherapy drug delivery to hair follicles and managing chemotherapy-induced alopecia.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.