{"title":"基于肠道-大脑轴的炎症性肠病新型蛋白质鉴定:多组学综合分析。","authors":"Yifeng Xu, Zhaoqi Yan, Liangji Liu","doi":"10.1186/s12014-024-09511-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut-brain axis has garnered increasing attention, with observational studies suggesting its involvement in the disease activity and progression of inflammatory bowel disease (IBD), but the precise mechanisms remain unclear.</p><p><strong>Materials and methods: </strong>In this study, we aimed to investigate \"novel proteins\" underlying IBD in the brain using a comprehensive multi-omics analysis approach. We performed integrated analyses of proteomics and transcriptomics in the human prefrontal cortex (PFC) tissue, coupled with genome-wide association studies (GWAS) of IBD, crohn's disease (CD), and ulcerative colitis (UC). This included performing protein-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with IBD and its subtypes.</p><p><strong>Results: </strong>PWAS analyses identified and confirmation 9, 9, and 6 brain proteins strongly associated with IBD, CD, and UC, respectively. Subsequent MR analyses revealed that increased abundance of GPSM1, AUH, TYK2, SULT1A1, and FDPS, along with corresponding gene expression, led to decreased risk of IBD. For CD, increased abundance of FDPS, SULT1A1, and PDLIM4, along with corresponding gene expression, also decreased CD risk. Regarding UC, only increased abundance of AUH, along with corresponding gene expression, was significantly associated with decreased UC risk. Further TWAS and colocalization analyses at the transcriptome level supported strong associations of SULT1A1 and FDPS proteins with reduced risk of IBD and CD.</p><p><strong>Conclusion: </strong>The two \"novel proteins,\" SULT1A1 and FDPS, are strongly associated with IBD and CD, elucidating their causal relationship in reducing the risk of IBD and CD. This provides new clues for identifying the pathogenesis and potential therapeutic targets for IBD and CD.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"59"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481439/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of novel proteins in inflammatory bowel disease based on the gut-brain axis: a multi-omics integrated analysis.\",\"authors\":\"Yifeng Xu, Zhaoqi Yan, Liangji Liu\",\"doi\":\"10.1186/s12014-024-09511-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The gut-brain axis has garnered increasing attention, with observational studies suggesting its involvement in the disease activity and progression of inflammatory bowel disease (IBD), but the precise mechanisms remain unclear.</p><p><strong>Materials and methods: </strong>In this study, we aimed to investigate \\\"novel proteins\\\" underlying IBD in the brain using a comprehensive multi-omics analysis approach. We performed integrated analyses of proteomics and transcriptomics in the human prefrontal cortex (PFC) tissue, coupled with genome-wide association studies (GWAS) of IBD, crohn's disease (CD), and ulcerative colitis (UC). This included performing protein-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with IBD and its subtypes.</p><p><strong>Results: </strong>PWAS analyses identified and confirmation 9, 9, and 6 brain proteins strongly associated with IBD, CD, and UC, respectively. Subsequent MR analyses revealed that increased abundance of GPSM1, AUH, TYK2, SULT1A1, and FDPS, along with corresponding gene expression, led to decreased risk of IBD. For CD, increased abundance of FDPS, SULT1A1, and PDLIM4, along with corresponding gene expression, also decreased CD risk. Regarding UC, only increased abundance of AUH, along with corresponding gene expression, was significantly associated with decreased UC risk. Further TWAS and colocalization analyses at the transcriptome level supported strong associations of SULT1A1 and FDPS proteins with reduced risk of IBD and CD.</p><p><strong>Conclusion: </strong>The two \\\"novel proteins,\\\" SULT1A1 and FDPS, are strongly associated with IBD and CD, elucidating their causal relationship in reducing the risk of IBD and CD. This provides new clues for identifying the pathogenesis and potential therapeutic targets for IBD and CD.</p>\",\"PeriodicalId\":10468,\"journal\":{\"name\":\"Clinical proteomics\",\"volume\":\"21 1\",\"pages\":\"59\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481439/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12014-024-09511-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-024-09511-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
背景:观察性研究表明,肠-脑轴参与了炎症性肠病(IBD)的疾病活动和进展,但其确切机制仍不清楚:在这项研究中,我们旨在使用一种全面的多组学分析方法来研究脑部 IBD 的 "新型蛋白质"。我们对人类前额叶皮层(PFC)组织中的蛋白质组学和转录组学进行了综合分析,并对 IBD、克罗恩病(CD)和溃疡性结肠炎(UC)进行了全基因组关联研究(GWAS)。这包括进行全蛋白质关联研究(PWAS)、全转录组关联研究(TWAS)、孟德尔随机化(MR)和共定位分析,以确定与 IBD 及其亚型相关的脑蛋白:结果:PWAS分析发现并确认了分别与IBD、CD和UC密切相关的9、9和6种脑蛋白。随后的磁共振分析表明,GPSM1、AUH、TYK2、SULT1A1和FDPS的丰度增加以及相应的基因表达会导致IBD风险降低。就 CD 而言,FDPS、SULT1A1 和 PDLIM4 以及相应基因表达量的增加也会降低 CD 风险。就 UC 而言,只有 AUH 丰度的增加以及相应基因的表达与 UC 风险的降低有显著相关性。转录组水平的进一步TWAS和共定位分析支持SULT1A1和FDPS蛋白与IBD和CD风险降低密切相关:结论:SULT1A1和FDPS这两种 "新型蛋白质 "与IBD和CD密切相关,阐明了它们在降低IBD和CD风险方面的因果关系。这为确定 IBD 和 CD 的发病机制和潜在治疗靶点提供了新线索。
Identification of novel proteins in inflammatory bowel disease based on the gut-brain axis: a multi-omics integrated analysis.
Background: The gut-brain axis has garnered increasing attention, with observational studies suggesting its involvement in the disease activity and progression of inflammatory bowel disease (IBD), but the precise mechanisms remain unclear.
Materials and methods: In this study, we aimed to investigate "novel proteins" underlying IBD in the brain using a comprehensive multi-omics analysis approach. We performed integrated analyses of proteomics and transcriptomics in the human prefrontal cortex (PFC) tissue, coupled with genome-wide association studies (GWAS) of IBD, crohn's disease (CD), and ulcerative colitis (UC). This included performing protein-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with IBD and its subtypes.
Results: PWAS analyses identified and confirmation 9, 9, and 6 brain proteins strongly associated with IBD, CD, and UC, respectively. Subsequent MR analyses revealed that increased abundance of GPSM1, AUH, TYK2, SULT1A1, and FDPS, along with corresponding gene expression, led to decreased risk of IBD. For CD, increased abundance of FDPS, SULT1A1, and PDLIM4, along with corresponding gene expression, also decreased CD risk. Regarding UC, only increased abundance of AUH, along with corresponding gene expression, was significantly associated with decreased UC risk. Further TWAS and colocalization analyses at the transcriptome level supported strong associations of SULT1A1 and FDPS proteins with reduced risk of IBD and CD.
Conclusion: The two "novel proteins," SULT1A1 and FDPS, are strongly associated with IBD and CD, elucidating their causal relationship in reducing the risk of IBD and CD. This provides new clues for identifying the pathogenesis and potential therapeutic targets for IBD and CD.
期刊介绍:
Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.