{"title":"DNA 聚合酶 beta 的异常表达与肿瘤免疫微环境失调及其在胃癌中的预后价值有关。","authors":"Aashirwad Shahi, Dawit Kidane","doi":"10.1007/s10238-024-01498-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer is caused by different exogenous risk factors. Polymerase beta (POLB) is critical to repair oxidative and alkylating-induced DNA damage in genome maintenance. It is unknown whether overexpression of POLB genes in GC modulates tumor immunogenicity and plays a role in its prognostic value.</p><p><strong>Methods: </strong>RNA-Seq of GC data retrieved from TCGA and GEO database and patient survival were compared using Kaplan-Meier statistical test. The TIMER algorithm was used to calculate the abundance of tumor-infiltrating immune cells. Furthermore, ROC analysis was applied to evaluate the prognostic value of POLB overexpression.</p><p><strong>Results: </strong>Our data analysis of TCGA and GEO gastric cancer genomics datasets reveals that POLB overexpression is significantly associated with intestinal subtypes of stomach cancer. In addition, POLB overexpression is associated with low expression of innate immune signaling genes. In contrast, POLB-overexpressed tumor harbors high mutation frequency and MSI score. Furthermore, POLB-overexpressed tumor with high immune score exhibits a better prognosis. Interestingly, our ROC analysis results suggested that POLB overexpression has a potential for prognostic markers for stomach cancer.</p><p><strong>Conclusions: </strong>Our analysis suggests that aberrant POLB overexpression in stomach cancer impacts the diverse aspects of tumor immune microenvironment. In addition, POLB might be a potential prognosis marker and/or an attractive target for immune-based therapy in GC. However, our observation still requires further experimental-based scientific validation studies.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"24 1","pages":"239"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aberrant DNA polymerase beta expression is associated with dysregulated tumor immune microenvironment and its prognostic value in gastric cancer.\",\"authors\":\"Aashirwad Shahi, Dawit Kidane\",\"doi\":\"10.1007/s10238-024-01498-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gastric cancer is caused by different exogenous risk factors. Polymerase beta (POLB) is critical to repair oxidative and alkylating-induced DNA damage in genome maintenance. It is unknown whether overexpression of POLB genes in GC modulates tumor immunogenicity and plays a role in its prognostic value.</p><p><strong>Methods: </strong>RNA-Seq of GC data retrieved from TCGA and GEO database and patient survival were compared using Kaplan-Meier statistical test. The TIMER algorithm was used to calculate the abundance of tumor-infiltrating immune cells. Furthermore, ROC analysis was applied to evaluate the prognostic value of POLB overexpression.</p><p><strong>Results: </strong>Our data analysis of TCGA and GEO gastric cancer genomics datasets reveals that POLB overexpression is significantly associated with intestinal subtypes of stomach cancer. In addition, POLB overexpression is associated with low expression of innate immune signaling genes. In contrast, POLB-overexpressed tumor harbors high mutation frequency and MSI score. Furthermore, POLB-overexpressed tumor with high immune score exhibits a better prognosis. Interestingly, our ROC analysis results suggested that POLB overexpression has a potential for prognostic markers for stomach cancer.</p><p><strong>Conclusions: </strong>Our analysis suggests that aberrant POLB overexpression in stomach cancer impacts the diverse aspects of tumor immune microenvironment. In addition, POLB might be a potential prognosis marker and/or an attractive target for immune-based therapy in GC. However, our observation still requires further experimental-based scientific validation studies.</p>\",\"PeriodicalId\":10337,\"journal\":{\"name\":\"Clinical and Experimental Medicine\",\"volume\":\"24 1\",\"pages\":\"239\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10238-024-01498-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-024-01498-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Aberrant DNA polymerase beta expression is associated with dysregulated tumor immune microenvironment and its prognostic value in gastric cancer.
Background: Gastric cancer is caused by different exogenous risk factors. Polymerase beta (POLB) is critical to repair oxidative and alkylating-induced DNA damage in genome maintenance. It is unknown whether overexpression of POLB genes in GC modulates tumor immunogenicity and plays a role in its prognostic value.
Methods: RNA-Seq of GC data retrieved from TCGA and GEO database and patient survival were compared using Kaplan-Meier statistical test. The TIMER algorithm was used to calculate the abundance of tumor-infiltrating immune cells. Furthermore, ROC analysis was applied to evaluate the prognostic value of POLB overexpression.
Results: Our data analysis of TCGA and GEO gastric cancer genomics datasets reveals that POLB overexpression is significantly associated with intestinal subtypes of stomach cancer. In addition, POLB overexpression is associated with low expression of innate immune signaling genes. In contrast, POLB-overexpressed tumor harbors high mutation frequency and MSI score. Furthermore, POLB-overexpressed tumor with high immune score exhibits a better prognosis. Interestingly, our ROC analysis results suggested that POLB overexpression has a potential for prognostic markers for stomach cancer.
Conclusions: Our analysis suggests that aberrant POLB overexpression in stomach cancer impacts the diverse aspects of tumor immune microenvironment. In addition, POLB might be a potential prognosis marker and/or an attractive target for immune-based therapy in GC. However, our observation still requires further experimental-based scientific validation studies.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.