特拉唑嗪是一种GPR119激动剂,可通过抑制MST1-Foxo3a信号通路改善NAFPD的有丝分裂和β细胞功能。

IF 5.9 1区 生物学 Q2 CELL BIOLOGY
Chenglei Zhang, Jiarui Li, Lijuan Wang, Jie Ma, Xin Li, Yuanyuan Wu, Yanru Ren, Yanhui Yang, Hui Song, Jianning Li, Yi Yang
{"title":"特拉唑嗪是一种GPR119激动剂,可通过抑制MST1-Foxo3a信号通路改善NAFPD的有丝分裂和β细胞功能。","authors":"Chenglei Zhang, Jiarui Li, Lijuan Wang, Jie Ma, Xin Li, Yuanyuan Wu, Yanru Ren, Yanhui Yang, Hui Song, Jianning Li, Yi Yang","doi":"10.1111/cpr.13764","DOIUrl":null,"url":null,"abstract":"<p><p>GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119<sup>-/-</sup> mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13764"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway.\",\"authors\":\"Chenglei Zhang, Jiarui Li, Lijuan Wang, Jie Ma, Xin Li, Yuanyuan Wu, Yanru Ren, Yanhui Yang, Hui Song, Jianning Li, Yi Yang\",\"doi\":\"10.1111/cpr.13764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119<sup>-/-</sup> mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e13764\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.13764\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13764","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前正在开发 GPR119 激动剂,以保护胰腺 β 细胞的功能,尤其是在非酒精性脂肪性胰腺疾病(NAFPD)与 β 细胞功能障碍密切相关的情况下。本研究旨在采用药物再利用策略筛选 GPR119 激动剂,并探索其在非酒精性脂肪性胰腺疾病中增强 β 细胞功能的潜在分子机制。用棕榈酸(PA)刺激 MIN6 细胞,并在以高脂饮食(HFD)喂养的 GPR119-/- 小鼠中建立 NAFPD 模型。通过筛选确定的特拉唑嗪被用来评估其通过 MST1-Foxo3a 通路和有丝分裂对增强 β 细胞功能的影响。特拉唑嗪能选择性激活 GPR119,导致 cAMP 和 ATP 合成增加,从而促进胰岛素分泌。服用特拉唑嗪可改善NAFPD小鼠的高血糖、肥胖和胰岛β细胞功能受损。它抑制了胰腺组织中 MST1-Foxo3a 表达的上调,增强了受损的有丝分裂清除,恢复了自噬通量,改善了 β 细胞线粒体的数量和结构。然而,GPR119的缺乏否定了特拉唑嗪对NAFPD小鼠胰腺β细胞功能的积极影响,并取消了其对MST1-Foxo3a通路的抑制作用。特拉唑嗪可激活胰腺β细胞表面的GPR119,通过抑制MST1-Foxo3a信号通路,增强有丝分裂,缓解NAFPD小鼠β细胞功能障碍。对于同时患有 NAFPD 和高血压的患者,特拉唑嗪可被视为优先治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway.

GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119-/- mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信