USP28 通过稳定胆管癌中的 PKM2/Hif1-α 促进肿瘤进展和糖酵解。

IF 6.6 2区 医学 Q1 Medicine
Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li
{"title":"USP28 通过稳定胆管癌中的 PKM2/Hif1-α 促进肿瘤进展和糖酵解。","authors":"Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li","doi":"10.1007/s13402-024-01002-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.</p><p><strong>Methods: </strong>In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.</p><p><strong>Results: </strong>Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.</p><p><strong>Conclusion: </strong>In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma.\",\"authors\":\"Qian Qiao, Jifei Wang, Shuochen Liu, Jiang Chang, Tao Zhou, Changxian Li, Yaodong Zhang, Wangjie Jiang, Yananlan Chen, Xiao Xu, Mingyu Wu, Xiangcheng Li\",\"doi\":\"10.1007/s13402-024-01002-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.</p><p><strong>Methods: </strong>In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.</p><p><strong>Results: </strong>Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.</p><p><strong>Conclusion: </strong>In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.</p>\",\"PeriodicalId\":9690,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-024-01002-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-01002-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:泛素化是蛋白质的重要修饰之一,可通过去泛素化酶(DUBs)逆转。泛素特异性蛋白酶28(USP28)属于去泛素化酶家族,在胰腺癌、乳腺癌等多种癌症中发挥促癌作用。迄今为止,USP 28 在胆管癌中的分子功能和意义仍不清楚:在本研究中,我们使用组织芯片(TMA)、逆转录聚合酶链反应(qRT-PCR)和在线数据库评估了 USP28 的表达。我们通过体外和体内功能实验研究了 USP28 对 CCA 进展的影响。此外,我们还利用 Western 印迹(WB)、免疫荧光(IF)和质谱技术探索了下游分子通路:结果:我们发现胆管癌组织的 USP 28 表达高于正常胆管组织,而且高 USP 28 水平与胆管癌患者的恶性表型和较差的预后显著相关。在体外和体内,USP28都能介导PKM2的去泛素化,从而激活下游Hif1-α信号通路,促进糖酵解和能量供应,最终促进肿瘤进展:综上所述,USP28通过降低PKM2的泛素化水平激活了下游的Hif1-α,进一步促进了CCA细胞的糖酵解水平,从而促进了肿瘤的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma.

Background: Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.

Methods: In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques.

Results: Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression.

Conclusion: In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Oncology
Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信