{"title":"揭示昆虫捕食富含乳胶的小榕树时体内的共生细菌群落。","authors":"Waleed Afzal Naveed, Qian Liu, Congcong Lu, Xiaolei Huang","doi":"10.1017/S0007485324000439","DOIUrl":null,"url":null,"abstract":"<p><p>The diversity and health of insects that feed on plants are closely related to their mutualistic symbionts and host plants. These symbiotic partners significantly influence various metabolic activities in these insects. However, the symbiotic bacterial community of toxic plant feeders still needs further characterisation. This study aims to unravel bacterial communities associated with the different species of insect representing three insect orders: Thysanoptera, Hemiptera, and Lepidoptera, along with their predicted functional role, which exclusively feeds on latex-rich plant species <i>Ficus microcarpa</i>. By using 16S rRNA gene high-throughput sequencing, the analysis was able to define the major alignment of the bacterial population, primarily comprising <i>Proteobacteria</i>, <i>Firmicutes</i>, <i>Bacteroidota</i>, <i>Actinobacteriota</i>, and <i>Acidobacteriota</i>. Significant differences in symbiotic organisms between three insect groups were discovered by the study: hemipterans had <i>Burkholderia</i> and <i>Buchnera</i>, and lepidopterans had <i>Acinetobacter</i>. At the same time, <i>Pseudomonas</i> was detected in high abundance in both lepidopteran and thysanopteran insects. Furthermore, these symbionts exhibit consistent core functions, potentially explaining how different insects can consume the same host plant. The identified core functions of symbionts open avenues for innovative approaches in utilising these relationships to develop environment-friendly solutions for pest control, with broader implications for agriculture and environmental conservation.</p>","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling symbiotic bacterial communities in insects feeding on the latex-rich plant <i>Ficus microcarpa</i>.\",\"authors\":\"Waleed Afzal Naveed, Qian Liu, Congcong Lu, Xiaolei Huang\",\"doi\":\"10.1017/S0007485324000439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diversity and health of insects that feed on plants are closely related to their mutualistic symbionts and host plants. These symbiotic partners significantly influence various metabolic activities in these insects. However, the symbiotic bacterial community of toxic plant feeders still needs further characterisation. This study aims to unravel bacterial communities associated with the different species of insect representing three insect orders: Thysanoptera, Hemiptera, and Lepidoptera, along with their predicted functional role, which exclusively feeds on latex-rich plant species <i>Ficus microcarpa</i>. By using 16S rRNA gene high-throughput sequencing, the analysis was able to define the major alignment of the bacterial population, primarily comprising <i>Proteobacteria</i>, <i>Firmicutes</i>, <i>Bacteroidota</i>, <i>Actinobacteriota</i>, and <i>Acidobacteriota</i>. Significant differences in symbiotic organisms between three insect groups were discovered by the study: hemipterans had <i>Burkholderia</i> and <i>Buchnera</i>, and lepidopterans had <i>Acinetobacter</i>. At the same time, <i>Pseudomonas</i> was detected in high abundance in both lepidopteran and thysanopteran insects. Furthermore, these symbionts exhibit consistent core functions, potentially explaining how different insects can consume the same host plant. The identified core functions of symbionts open avenues for innovative approaches in utilising these relationships to develop environment-friendly solutions for pest control, with broader implications for agriculture and environmental conservation.</p>\",\"PeriodicalId\":9370,\"journal\":{\"name\":\"Bulletin of Entomological Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Entomological Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S0007485324000439\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0007485324000439","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Unveiling symbiotic bacterial communities in insects feeding on the latex-rich plant Ficus microcarpa.
The diversity and health of insects that feed on plants are closely related to their mutualistic symbionts and host plants. These symbiotic partners significantly influence various metabolic activities in these insects. However, the symbiotic bacterial community of toxic plant feeders still needs further characterisation. This study aims to unravel bacterial communities associated with the different species of insect representing three insect orders: Thysanoptera, Hemiptera, and Lepidoptera, along with their predicted functional role, which exclusively feeds on latex-rich plant species Ficus microcarpa. By using 16S rRNA gene high-throughput sequencing, the analysis was able to define the major alignment of the bacterial population, primarily comprising Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota, and Acidobacteriota. Significant differences in symbiotic organisms between three insect groups were discovered by the study: hemipterans had Burkholderia and Buchnera, and lepidopterans had Acinetobacter. At the same time, Pseudomonas was detected in high abundance in both lepidopteran and thysanopteran insects. Furthermore, these symbionts exhibit consistent core functions, potentially explaining how different insects can consume the same host plant. The identified core functions of symbionts open avenues for innovative approaches in utilising these relationships to develop environment-friendly solutions for pest control, with broader implications for agriculture and environmental conservation.
期刊介绍:
Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.