DrugDAGT:具有对比学习功能的双注意图转换器改进了药物相互作用预测。

IF 4.4 1区 生物学 Q1 BIOLOGY
Yaojia Chen, Jiacheng Wang, Quan Zou, Mengting Niu, Yijie Ding, Jiangning Song, Yansu Wang
{"title":"DrugDAGT:具有对比学习功能的双注意图转换器改进了药物相互作用预测。","authors":"Yaojia Chen, Jiacheng Wang, Quan Zou, Mengting Niu, Yijie Ding, Jiangning Song, Yansu Wang","doi":"10.1186/s12915-024-02030-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug-drug interactions (DDIs) can result in unexpected pharmacological outcomes, including adverse drug events, which are crucial for drug discovery. Graph neural networks have substantially advanced our ability to model molecular representations; however, the precise identification of key local structures and the capture of long-distance structural correlations for better DDI prediction and interpretation remain significant challenges.</p><p><strong>Results: </strong>Here, we present DrugDAGT, a dual-attention graph transformer framework with contrastive learning for predicting multiple DDI types. The dual-attention graph transformer incorporates attention mechanisms at both the bond and atomic levels, thereby enabling the integration of short and long-range dependencies within drug molecules to pinpoint key local structures essential for DDI discovery. Moreover, DrugDAGT further implements graph contrastive learning to maximize the similarity of representations across different views for better discrimination of molecular structures. Experiments in both warm-start and cold-start scenarios demonstrate that DrugDAGT outperforms state-of-the-art baseline models, achieving superior overall performance. Furthermore, visualization of the learned representations of drug pairs and the attention map provides interpretable insights instead of black-box results.</p><p><strong>Conclusions: </strong>DrugDAGT provides an effective tool for accurately predicting multiple DDI types by identifying key local chemical structures, offering valuable insights for prescribing medications, and guiding drug development. All data and code of our DrugDAGT can be found at https://github.com/codejiajia/DrugDAGT .</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"233"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472440/pdf/","citationCount":"0","resultStr":"{\"title\":\"DrugDAGT: a dual-attention graph transformer with contrastive learning improves drug-drug interaction prediction.\",\"authors\":\"Yaojia Chen, Jiacheng Wang, Quan Zou, Mengting Niu, Yijie Ding, Jiangning Song, Yansu Wang\",\"doi\":\"10.1186/s12915-024-02030-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drug-drug interactions (DDIs) can result in unexpected pharmacological outcomes, including adverse drug events, which are crucial for drug discovery. Graph neural networks have substantially advanced our ability to model molecular representations; however, the precise identification of key local structures and the capture of long-distance structural correlations for better DDI prediction and interpretation remain significant challenges.</p><p><strong>Results: </strong>Here, we present DrugDAGT, a dual-attention graph transformer framework with contrastive learning for predicting multiple DDI types. The dual-attention graph transformer incorporates attention mechanisms at both the bond and atomic levels, thereby enabling the integration of short and long-range dependencies within drug molecules to pinpoint key local structures essential for DDI discovery. Moreover, DrugDAGT further implements graph contrastive learning to maximize the similarity of representations across different views for better discrimination of molecular structures. Experiments in both warm-start and cold-start scenarios demonstrate that DrugDAGT outperforms state-of-the-art baseline models, achieving superior overall performance. Furthermore, visualization of the learned representations of drug pairs and the attention map provides interpretable insights instead of black-box results.</p><p><strong>Conclusions: </strong>DrugDAGT provides an effective tool for accurately predicting multiple DDI types by identifying key local chemical structures, offering valuable insights for prescribing medications, and guiding drug development. All data and code of our DrugDAGT can be found at https://github.com/codejiajia/DrugDAGT .</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"22 1\",\"pages\":\"233\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-02030-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02030-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:药物间相互作用(DDI)会导致意想不到的药理结果,包括药物不良反应,这对药物发现至关重要。图神经网络大大提高了我们建立分子表征模型的能力;然而,如何精确识别关键局部结构并捕捉远距离结构相关性,以更好地预测和解释 DDI,仍然是一项重大挑战:在此,我们介绍了DrugDAGT,这是一种具有对比学习功能的双注意图转换器框架,用于预测多种DDI类型。双注意图变换器结合了键和原子层面的注意机制,从而能够整合药物分子内的短程和长程依赖关系,准确定位发现 DDI 所必需的关键局部结构。此外,DrugDAGT 还进一步实现了图对比学习,以最大限度地提高不同视图中表征的相似性,从而更好地辨别分子结构。在热启动和冷启动场景下进行的实验表明,DrugDAGT 的表现优于最先进的基线模型,实现了卓越的整体性能。此外,学习到的药物对表征和注意力图谱的可视化提供了可解释的见解,而不是黑箱结果:DrugDAGT通过识别关键的局部化学结构,为准确预测多种DDI类型提供了有效的工具,为处方用药和指导药物开发提供了有价值的见解。有关 DrugDAGT 的所有数据和代码,请访问 https://github.com/codejiajia/DrugDAGT 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DrugDAGT: a dual-attention graph transformer with contrastive learning improves drug-drug interaction prediction.

Background: Drug-drug interactions (DDIs) can result in unexpected pharmacological outcomes, including adverse drug events, which are crucial for drug discovery. Graph neural networks have substantially advanced our ability to model molecular representations; however, the precise identification of key local structures and the capture of long-distance structural correlations for better DDI prediction and interpretation remain significant challenges.

Results: Here, we present DrugDAGT, a dual-attention graph transformer framework with contrastive learning for predicting multiple DDI types. The dual-attention graph transformer incorporates attention mechanisms at both the bond and atomic levels, thereby enabling the integration of short and long-range dependencies within drug molecules to pinpoint key local structures essential for DDI discovery. Moreover, DrugDAGT further implements graph contrastive learning to maximize the similarity of representations across different views for better discrimination of molecular structures. Experiments in both warm-start and cold-start scenarios demonstrate that DrugDAGT outperforms state-of-the-art baseline models, achieving superior overall performance. Furthermore, visualization of the learned representations of drug pairs and the attention map provides interpretable insights instead of black-box results.

Conclusions: DrugDAGT provides an effective tool for accurately predicting multiple DDI types by identifying key local chemical structures, offering valuable insights for prescribing medications, and guiding drug development. All data and code of our DrugDAGT can be found at https://github.com/codejiajia/DrugDAGT .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信