Grace Nabakooza, Darlene D Wagner, Nehalraza Momin, Rachel L Marine, William C Weldon, M Steven Oberste
{"title":"序列匹配适配器修剪器为 Illumina RNA 病毒测序提供一致的质量和组装指标。","authors":"Grace Nabakooza, Darlene D Wagner, Nehalraza Momin, Rachel L Marine, William C Weldon, M Steven Oberste","doi":"10.1186/s13104-024-06951-0","DOIUrl":null,"url":null,"abstract":"<p><p>Trimming adapters and low-quality bases from next-generation sequencing (NGS) data is crucial for optimal analysis. We evaluated six trimming programs, implementing five different algorithms, for their effectiveness in trimming adapters and improving quality, contig assembly, and single-nucleotide polymorphism (SNP) quality and concordance for poliovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and norovirus paired data sequenced on Illumina iSeq and MiSeq platforms. Trimmomatic and BBDuk effectively removed adapters from all datasets, unlike FastP, AdapterRemoval, SeqPurge, and Skewer. All trimmers improved read quality (Q ≥ 30, 87.8 - 96.1%) compared to raw reads (83.6 - 93.2%). Trimmers implementing traditional sequence-matching (Trimmomatic and AdapterRemoval) and overlapping algorithm (FastP) retained the highest-quality reads. While all trimmers improved the maximum contig length and genome coverage for iSeq and MiSeq viral assemblies, BBDuk-trimmed reads assembled the shortest contigs. SNP concordance was consistently high (> 97.7 - 100%) across trimmers. However, BBDuk-trimmed reads had the lowest quality SNPs. Overall, the two adapter trimmers that utilized the traditional sequence-matching algorithm performed consistently across the viral datasets analyzed. Our findings guide software selection and inform future versatile trimmer development for viral genome analysis.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"17 1","pages":"308"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sequence-matching adapter trimmers generate consistent quality and assembly metrics for Illumina sequencing of RNA viruses.\",\"authors\":\"Grace Nabakooza, Darlene D Wagner, Nehalraza Momin, Rachel L Marine, William C Weldon, M Steven Oberste\",\"doi\":\"10.1186/s13104-024-06951-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trimming adapters and low-quality bases from next-generation sequencing (NGS) data is crucial for optimal analysis. We evaluated six trimming programs, implementing five different algorithms, for their effectiveness in trimming adapters and improving quality, contig assembly, and single-nucleotide polymorphism (SNP) quality and concordance for poliovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and norovirus paired data sequenced on Illumina iSeq and MiSeq platforms. Trimmomatic and BBDuk effectively removed adapters from all datasets, unlike FastP, AdapterRemoval, SeqPurge, and Skewer. All trimmers improved read quality (Q ≥ 30, 87.8 - 96.1%) compared to raw reads (83.6 - 93.2%). Trimmers implementing traditional sequence-matching (Trimmomatic and AdapterRemoval) and overlapping algorithm (FastP) retained the highest-quality reads. While all trimmers improved the maximum contig length and genome coverage for iSeq and MiSeq viral assemblies, BBDuk-trimmed reads assembled the shortest contigs. SNP concordance was consistently high (> 97.7 - 100%) across trimmers. However, BBDuk-trimmed reads had the lowest quality SNPs. Overall, the two adapter trimmers that utilized the traditional sequence-matching algorithm performed consistently across the viral datasets analyzed. Our findings guide software selection and inform future versatile trimmer development for viral genome analysis.</p>\",\"PeriodicalId\":9234,\"journal\":{\"name\":\"BMC Research Notes\",\"volume\":\"17 1\",\"pages\":\"308\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Research Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13104-024-06951-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-06951-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sequence-matching adapter trimmers generate consistent quality and assembly metrics for Illumina sequencing of RNA viruses.
Trimming adapters and low-quality bases from next-generation sequencing (NGS) data is crucial for optimal analysis. We evaluated six trimming programs, implementing five different algorithms, for their effectiveness in trimming adapters and improving quality, contig assembly, and single-nucleotide polymorphism (SNP) quality and concordance for poliovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and norovirus paired data sequenced on Illumina iSeq and MiSeq platforms. Trimmomatic and BBDuk effectively removed adapters from all datasets, unlike FastP, AdapterRemoval, SeqPurge, and Skewer. All trimmers improved read quality (Q ≥ 30, 87.8 - 96.1%) compared to raw reads (83.6 - 93.2%). Trimmers implementing traditional sequence-matching (Trimmomatic and AdapterRemoval) and overlapping algorithm (FastP) retained the highest-quality reads. While all trimmers improved the maximum contig length and genome coverage for iSeq and MiSeq viral assemblies, BBDuk-trimmed reads assembled the shortest contigs. SNP concordance was consistently high (> 97.7 - 100%) across trimmers. However, BBDuk-trimmed reads had the lowest quality SNPs. Overall, the two adapter trimmers that utilized the traditional sequence-matching algorithm performed consistently across the viral datasets analyzed. Our findings guide software selection and inform future versatile trimmer development for viral genome analysis.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.