{"title":"日本成年人闲暇时间、非闲暇时间体育活动与肾功能之间的关系:一项横断面研究。","authors":"Ippei Chiba, Naoki Nakaya, Mana Kogure, Rieko Hatanaka, Kumi Nakaya, Sayuri Tokioka, Tomohiro Nakamura, Satoshi Nagaie, Soichi Ogishima, Taku Obara, Toshimi Sato, Nobuo Fuse, Yoko Izumi, Shinichi Kuriyama, Atsushi Hozawa","doi":"10.1186/s12882-024-03813-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease (CKD) contributes to decreased life expectancy. We examined the association between leisure-time physical activity (LTPA), non-leisure-time physical activity (non-LTPA) and kidney function.</p><p><strong>Methods: </strong>This was a cross-sectional study including 32 162 community-dwelling adults aged ≥ 20 years from the Tohoku Medical MegaBank community-based cohort study. Kidney function was evaluated using cystatin C-based estimated glomerular filtration rate (eGFR) as well as self-reported LTPA and non-LTPA. CKD was defined as either eGFR decline (≤ 60 mL/min/1.73 m<sup>2</sup>) or presence of albuminuria (albumin-creatinine ≥ 30 mg/g). The association between domain-specific physical activity and kidney function, and CKD prevalence was examined using multivariable-adjusted ordinary least squares and modified Poisson models.</p><p><strong>Results: </strong>The mean eGFR was 98.1 (± 13.2) mL/min/1.73 m<sup>2</sup>. 3 185 (9.9%) participants were classified as having CKD. The mean LTPA and non-LTPA levels were 2.9 (± 4.2) and 16.6 (± 14.2) METs-hour/day, respectively. For LTPA, in the adjusted model, the quartile groups with higher levels had a higher kidney function (β, 0.36; 95% confidence intervals [CI], [0.06, 0.66]; p = 0.019 for the 2nd quartile, β, 0.82; 95% CI, [0.51, 1.14]; p < 0.001 for the 3rd quartile, and β, 1.16; 95% CI, [0.83, 1.49]; p < 0.001 for the 4th quartile), whereas there were no apparent associations for prevalence of CKD. For non-LTPA, 4th quartile was associated with decreased eGFR (β, -0.42; 95% CI, [-0.72, -0.11]; p = 0.007) and higher prevalence of CKD prevalence (Prevalence ratio, 1.12; 95% CI, [1.02, 1.24]; p = 0.022). These associations with kidney function remained consistent in the subgroup analyses divided by demographic and biological variables.</p><p><strong>Conclusions: </strong>We observed a positive association between higher LTPA levels and better kidney function, but not association with CKD prevalence. In contrast, higher non-LTPA was negatively associated with both kidney function and CKD prevalence. These findings suggest that promoting LTPA is beneficial for kidney function.</p>","PeriodicalId":9089,"journal":{"name":"BMC Nephrology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Associations between leisure time, non-leisure time physical activity, and kidney function in Japanese adults: a cross-sectional study.\",\"authors\":\"Ippei Chiba, Naoki Nakaya, Mana Kogure, Rieko Hatanaka, Kumi Nakaya, Sayuri Tokioka, Tomohiro Nakamura, Satoshi Nagaie, Soichi Ogishima, Taku Obara, Toshimi Sato, Nobuo Fuse, Yoko Izumi, Shinichi Kuriyama, Atsushi Hozawa\",\"doi\":\"10.1186/s12882-024-03813-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic kidney disease (CKD) contributes to decreased life expectancy. We examined the association between leisure-time physical activity (LTPA), non-leisure-time physical activity (non-LTPA) and kidney function.</p><p><strong>Methods: </strong>This was a cross-sectional study including 32 162 community-dwelling adults aged ≥ 20 years from the Tohoku Medical MegaBank community-based cohort study. Kidney function was evaluated using cystatin C-based estimated glomerular filtration rate (eGFR) as well as self-reported LTPA and non-LTPA. CKD was defined as either eGFR decline (≤ 60 mL/min/1.73 m<sup>2</sup>) or presence of albuminuria (albumin-creatinine ≥ 30 mg/g). The association between domain-specific physical activity and kidney function, and CKD prevalence was examined using multivariable-adjusted ordinary least squares and modified Poisson models.</p><p><strong>Results: </strong>The mean eGFR was 98.1 (± 13.2) mL/min/1.73 m<sup>2</sup>. 3 185 (9.9%) participants were classified as having CKD. The mean LTPA and non-LTPA levels were 2.9 (± 4.2) and 16.6 (± 14.2) METs-hour/day, respectively. For LTPA, in the adjusted model, the quartile groups with higher levels had a higher kidney function (β, 0.36; 95% confidence intervals [CI], [0.06, 0.66]; p = 0.019 for the 2nd quartile, β, 0.82; 95% CI, [0.51, 1.14]; p < 0.001 for the 3rd quartile, and β, 1.16; 95% CI, [0.83, 1.49]; p < 0.001 for the 4th quartile), whereas there were no apparent associations for prevalence of CKD. For non-LTPA, 4th quartile was associated with decreased eGFR (β, -0.42; 95% CI, [-0.72, -0.11]; p = 0.007) and higher prevalence of CKD prevalence (Prevalence ratio, 1.12; 95% CI, [1.02, 1.24]; p = 0.022). These associations with kidney function remained consistent in the subgroup analyses divided by demographic and biological variables.</p><p><strong>Conclusions: </strong>We observed a positive association between higher LTPA levels and better kidney function, but not association with CKD prevalence. In contrast, higher non-LTPA was negatively associated with both kidney function and CKD prevalence. These findings suggest that promoting LTPA is beneficial for kidney function.</p>\",\"PeriodicalId\":9089,\"journal\":{\"name\":\"BMC Nephrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12882-024-03813-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12882-024-03813-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Associations between leisure time, non-leisure time physical activity, and kidney function in Japanese adults: a cross-sectional study.
Background: Chronic kidney disease (CKD) contributes to decreased life expectancy. We examined the association between leisure-time physical activity (LTPA), non-leisure-time physical activity (non-LTPA) and kidney function.
Methods: This was a cross-sectional study including 32 162 community-dwelling adults aged ≥ 20 years from the Tohoku Medical MegaBank community-based cohort study. Kidney function was evaluated using cystatin C-based estimated glomerular filtration rate (eGFR) as well as self-reported LTPA and non-LTPA. CKD was defined as either eGFR decline (≤ 60 mL/min/1.73 m2) or presence of albuminuria (albumin-creatinine ≥ 30 mg/g). The association between domain-specific physical activity and kidney function, and CKD prevalence was examined using multivariable-adjusted ordinary least squares and modified Poisson models.
Results: The mean eGFR was 98.1 (± 13.2) mL/min/1.73 m2. 3 185 (9.9%) participants were classified as having CKD. The mean LTPA and non-LTPA levels were 2.9 (± 4.2) and 16.6 (± 14.2) METs-hour/day, respectively. For LTPA, in the adjusted model, the quartile groups with higher levels had a higher kidney function (β, 0.36; 95% confidence intervals [CI], [0.06, 0.66]; p = 0.019 for the 2nd quartile, β, 0.82; 95% CI, [0.51, 1.14]; p < 0.001 for the 3rd quartile, and β, 1.16; 95% CI, [0.83, 1.49]; p < 0.001 for the 4th quartile), whereas there were no apparent associations for prevalence of CKD. For non-LTPA, 4th quartile was associated with decreased eGFR (β, -0.42; 95% CI, [-0.72, -0.11]; p = 0.007) and higher prevalence of CKD prevalence (Prevalence ratio, 1.12; 95% CI, [1.02, 1.24]; p = 0.022). These associations with kidney function remained consistent in the subgroup analyses divided by demographic and biological variables.
Conclusions: We observed a positive association between higher LTPA levels and better kidney function, but not association with CKD prevalence. In contrast, higher non-LTPA was negatively associated with both kidney function and CKD prevalence. These findings suggest that promoting LTPA is beneficial for kidney function.
期刊介绍:
BMC Nephrology is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of kidney and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.