Amr Saber Mahmoud, Alaa El Din H Sayed, Usama T Mahmoud, Ahmed A A Mohammed, Madeha H A Darwish
{"title":"纳米氧化锌对非洲鲶鱼(Clarias gariepinus)暴露于热应激下的行为和应激指标的影响。","authors":"Amr Saber Mahmoud, Alaa El Din H Sayed, Usama T Mahmoud, Ahmed A A Mohammed, Madeha H A Darwish","doi":"10.1186/s12917-024-04302-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"20 1","pages":"474"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress.\",\"authors\":\"Amr Saber Mahmoud, Alaa El Din H Sayed, Usama T Mahmoud, Ahmed A A Mohammed, Madeha H A Darwish\",\"doi\":\"10.1186/s12917-024-04302-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.</p>\",\"PeriodicalId\":9041,\"journal\":{\"name\":\"BMC Veterinary Research\",\"volume\":\"20 1\",\"pages\":\"474\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12917-024-04302-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-024-04302-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在通过评估非洲鲶鱼(Clarias gariepinus)的攻击行为(咬钩频率和追逐持续时间)、血液学指标和应激相关生化指标等参数,评估纳米氧化锌在减轻热应激有害影响方面的作用。总共有 96 条鲶鱼被分为四个不同的组(每组 24 条):第一组(CON)为对照组,食物中不含纳米氧化锌。第二组(HS)在 35 °C ± 1 °C的温度下接受热胁迫。第三组(ZN)饲喂含纳米氧化锌(30 毫克/千克)的日粮,第四组(ZHN)暴露于热应激(35 °C ± 1 °C)并饲喂含纳米氧化锌(30 毫克/千克)的日粮。结果表明,动物的攻击行为和皮质醇水平明显高于对照组(P
Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress.
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
期刊介绍:
BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.