{"title":"家禽副产品粉和替代油完全替代鱼油对虹鳟鱼(Oncorhynchus mykiss)生长性能和肠道健康的影响:FEEDNETICS™ 验证研究。","authors":"Imam Hasan, Simona Rimoldi, Biagina Chiofalo, Marianna Oteri, Micaela Antonini, Rosangela Armone, Violeta Kalemi, Laura Gasco, Genciana Terova","doi":"10.1186/s12917-024-04324-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aquaculture, traditionally a form of biotechnology, has evolved to integrate innovative biotechnological applications, such as advanced feed formulations, aimed at improving the growth performance and health of farmed fish species. In the present study, the effects of feeding rainbow trout with novel feed formulations were investigated. Fish growth, gut and liver morphology, the concentration of fatty acids in the fillet, and volatile fatty acids in the gut were assessed. The study also validated scenarios from in vivo experiments using a nutrient-based model called FEEDNETICS™. This globally used model serves as a tool for data interpretation and decision support in the context of precision fish farming.</p><p><strong>Methods: </strong>Alternative protein and oil sources, including poultry by-product meal (PBM) and natural algae oil, were explored as sustainable replacements for fishmeal (FM) and fish oil (FO). A 90-day feeding trial was conducted using rainbow trout, comparing two isoproteic, isolipidic and isoenergetic diets. The control diet contained 15% FM, 5% PBM, and 8% FO, while the test diet replaced FM with 15% PBM and 5% feather meal hydrolysate (FMH), and fully substituted FO with VeraMaris<sup>®</sup> natural algae oil and rapeseed oil.</p><p><strong>Results: </strong>PBM successfully replaced FM protein without negatively affecting feed intake, growth performance or feed utilization in trout. The combination of PBM and natural algae oil was well tolerated by the trout and showed no negative effects on gut health. A detailed analysis of fatty acids in the fillet revealed that PUFAs of the n3 and n6 series were significantly higher in the PBM group than in the FM group. Values of fatty acid-related health indexes, including atherogenicity index, and thrombogenicity index, confirmed the high nutritional value of trout filet, thus representing a healthy product for human. In addition, the predictions using the FEEDNETICS™ indicated that the tested novel alternative formulations are economically viable. The validation of the model for fish growth resulted in a Mean Absolute Percentage Error (MAPE) of 8%.</p><p><strong>Conclusions: </strong>The FEEDNETICS™ application enhances our ability to optimize feeding strategies and improve production efficiency in the aquaculture industry. VeraMaris<sup>®</sup> algae oil and PBM could serve as viable and sustainable raw materials for fish feed, promoting environmentally friendly aquaculture practices.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of poultry by-product meal and complete replacement of fish oil with alternative oils on growth performance and gut health of rainbow trout (Oncorhynchus mykiss): a FEEDNETICS™ validation study.\",\"authors\":\"Imam Hasan, Simona Rimoldi, Biagina Chiofalo, Marianna Oteri, Micaela Antonini, Rosangela Armone, Violeta Kalemi, Laura Gasco, Genciana Terova\",\"doi\":\"10.1186/s12917-024-04324-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Aquaculture, traditionally a form of biotechnology, has evolved to integrate innovative biotechnological applications, such as advanced feed formulations, aimed at improving the growth performance and health of farmed fish species. In the present study, the effects of feeding rainbow trout with novel feed formulations were investigated. Fish growth, gut and liver morphology, the concentration of fatty acids in the fillet, and volatile fatty acids in the gut were assessed. The study also validated scenarios from in vivo experiments using a nutrient-based model called FEEDNETICS™. This globally used model serves as a tool for data interpretation and decision support in the context of precision fish farming.</p><p><strong>Methods: </strong>Alternative protein and oil sources, including poultry by-product meal (PBM) and natural algae oil, were explored as sustainable replacements for fishmeal (FM) and fish oil (FO). A 90-day feeding trial was conducted using rainbow trout, comparing two isoproteic, isolipidic and isoenergetic diets. The control diet contained 15% FM, 5% PBM, and 8% FO, while the test diet replaced FM with 15% PBM and 5% feather meal hydrolysate (FMH), and fully substituted FO with VeraMaris<sup>®</sup> natural algae oil and rapeseed oil.</p><p><strong>Results: </strong>PBM successfully replaced FM protein without negatively affecting feed intake, growth performance or feed utilization in trout. The combination of PBM and natural algae oil was well tolerated by the trout and showed no negative effects on gut health. A detailed analysis of fatty acids in the fillet revealed that PUFAs of the n3 and n6 series were significantly higher in the PBM group than in the FM group. Values of fatty acid-related health indexes, including atherogenicity index, and thrombogenicity index, confirmed the high nutritional value of trout filet, thus representing a healthy product for human. In addition, the predictions using the FEEDNETICS™ indicated that the tested novel alternative formulations are economically viable. The validation of the model for fish growth resulted in a Mean Absolute Percentage Error (MAPE) of 8%.</p><p><strong>Conclusions: </strong>The FEEDNETICS™ application enhances our ability to optimize feeding strategies and improve production efficiency in the aquaculture industry. VeraMaris<sup>®</sup> algae oil and PBM could serve as viable and sustainable raw materials for fish feed, promoting environmentally friendly aquaculture practices.</p>\",\"PeriodicalId\":9041,\"journal\":{\"name\":\"BMC Veterinary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12917-024-04324-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-024-04324-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Effects of poultry by-product meal and complete replacement of fish oil with alternative oils on growth performance and gut health of rainbow trout (Oncorhynchus mykiss): a FEEDNETICS™ validation study.
Background: Aquaculture, traditionally a form of biotechnology, has evolved to integrate innovative biotechnological applications, such as advanced feed formulations, aimed at improving the growth performance and health of farmed fish species. In the present study, the effects of feeding rainbow trout with novel feed formulations were investigated. Fish growth, gut and liver morphology, the concentration of fatty acids in the fillet, and volatile fatty acids in the gut were assessed. The study also validated scenarios from in vivo experiments using a nutrient-based model called FEEDNETICS™. This globally used model serves as a tool for data interpretation and decision support in the context of precision fish farming.
Methods: Alternative protein and oil sources, including poultry by-product meal (PBM) and natural algae oil, were explored as sustainable replacements for fishmeal (FM) and fish oil (FO). A 90-day feeding trial was conducted using rainbow trout, comparing two isoproteic, isolipidic and isoenergetic diets. The control diet contained 15% FM, 5% PBM, and 8% FO, while the test diet replaced FM with 15% PBM and 5% feather meal hydrolysate (FMH), and fully substituted FO with VeraMaris® natural algae oil and rapeseed oil.
Results: PBM successfully replaced FM protein without negatively affecting feed intake, growth performance or feed utilization in trout. The combination of PBM and natural algae oil was well tolerated by the trout and showed no negative effects on gut health. A detailed analysis of fatty acids in the fillet revealed that PUFAs of the n3 and n6 series were significantly higher in the PBM group than in the FM group. Values of fatty acid-related health indexes, including atherogenicity index, and thrombogenicity index, confirmed the high nutritional value of trout filet, thus representing a healthy product for human. In addition, the predictions using the FEEDNETICS™ indicated that the tested novel alternative formulations are economically viable. The validation of the model for fish growth resulted in a Mean Absolute Percentage Error (MAPE) of 8%.
Conclusions: The FEEDNETICS™ application enhances our ability to optimize feeding strategies and improve production efficiency in the aquaculture industry. VeraMaris® algae oil and PBM could serve as viable and sustainable raw materials for fish feed, promoting environmentally friendly aquaculture practices.
期刊介绍:
BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.