TDT-MIL:双通道空间位置编码器弱监督整张幻灯片图像分类框架。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-09-13 eCollection Date: 2024-10-01 DOI:10.1364/BOE.530534
Hongbin Zhang, Ya Feng, Jin Zhang, Guangli Li, Jianguo Wu, Donghong Ji
{"title":"TDT-MIL:双通道空间位置编码器弱监督整张幻灯片图像分类框架。","authors":"Hongbin Zhang, Ya Feng, Jin Zhang, Guangli Li, Jianguo Wu, Donghong Ji","doi":"10.1364/BOE.530534","DOIUrl":null,"url":null,"abstract":"<p><p>The classic multiple instance learning (MIL) paradigm is harnessed for weakly-supervised whole slide image (WSI) classification. The spatial position relationship located between positive tissues is crucial for this task due to the small percentage of these tissues in billions of pixels, which has been overlooked by most studies. Therefore, we propose a framework called TDT-MIL. We first serially connect a convolutional neural network and transformer for basic feature extraction. Then, a novel dual-channel spatial positional encoder (DCSPE) module is designed to simultaneously capture the complementary local and global positional information between instances. To further supplement the spatial position relationship, we construct a convolutional triple-attention (CTA) module to attend to the inter-channel information. Thus, the spatial positional and inter-channel information is fully mined by our model to characterize the key pathological semantics in WSI. We evaluated TDT-MIL on two publicly available datasets, including CAMELYON16 and TCGA-NSCLC, with the corresponding classification accuracy and AUC up to 91.54%, 94.96%, and 90.21%, 94.36%, respectively, outperforming state-of-the-art baselines. More importantly, our model possesses a satisfactory capability in solving the imbalanced WSI classification task using an ingenious but interpretable structure.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5831-5855"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482175/pdf/","citationCount":"0","resultStr":"{\"title\":\"TDT-MIL: a framework with a dual-channel spatial positional encoder for weakly-supervised whole slide image classification.\",\"authors\":\"Hongbin Zhang, Ya Feng, Jin Zhang, Guangli Li, Jianguo Wu, Donghong Ji\",\"doi\":\"10.1364/BOE.530534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The classic multiple instance learning (MIL) paradigm is harnessed for weakly-supervised whole slide image (WSI) classification. The spatial position relationship located between positive tissues is crucial for this task due to the small percentage of these tissues in billions of pixels, which has been overlooked by most studies. Therefore, we propose a framework called TDT-MIL. We first serially connect a convolutional neural network and transformer for basic feature extraction. Then, a novel dual-channel spatial positional encoder (DCSPE) module is designed to simultaneously capture the complementary local and global positional information between instances. To further supplement the spatial position relationship, we construct a convolutional triple-attention (CTA) module to attend to the inter-channel information. Thus, the spatial positional and inter-channel information is fully mined by our model to characterize the key pathological semantics in WSI. We evaluated TDT-MIL on two publicly available datasets, including CAMELYON16 and TCGA-NSCLC, with the corresponding classification accuracy and AUC up to 91.54%, 94.96%, and 90.21%, 94.36%, respectively, outperforming state-of-the-art baselines. More importantly, our model possesses a satisfactory capability in solving the imbalanced WSI classification task using an ingenious but interpretable structure.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 10\",\"pages\":\"5831-5855\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.530534\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.530534","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

经典的多实例学习(MIL)范式被用于弱监督全切片图像(WSI)分类。由于阳性组织在数十亿像素中所占比例较小,因此位于阳性组织之间的空间位置关系对这项任务至关重要,而大多数研究都忽略了这一点。因此,我们提出了一个名为 TDT-MIL 的框架。我们首先将卷积神经网络和变压器串联起来,进行基本的特征提取。然后,我们设计了一个新颖的双通道空间位置编码器(DCSPE)模块,以同时捕捉实例之间互补的局部和全局位置信息。为了进一步补充空间位置关系,我们构建了一个卷积三重关注(CTA)模块来关注通道间信息。因此,我们的模型可以充分挖掘空间位置和信道间信息,从而描述 WSI 中的关键病理语义。我们在两个公开数据集(包括 CAMELYON16 和 TCGA-NSCLC)上对 TDT-MIL 进行了评估,其相应的分类准确率和 AUC 分别高达 91.54%、94.96% 和 90.21%、94.36%,优于最先进的基线模型。更重要的是,我们的模型具有令人满意的能力,能利用巧妙而可解释的结构解决不平衡的 WSI 分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TDT-MIL: a framework with a dual-channel spatial positional encoder for weakly-supervised whole slide image classification.

The classic multiple instance learning (MIL) paradigm is harnessed for weakly-supervised whole slide image (WSI) classification. The spatial position relationship located between positive tissues is crucial for this task due to the small percentage of these tissues in billions of pixels, which has been overlooked by most studies. Therefore, we propose a framework called TDT-MIL. We first serially connect a convolutional neural network and transformer for basic feature extraction. Then, a novel dual-channel spatial positional encoder (DCSPE) module is designed to simultaneously capture the complementary local and global positional information between instances. To further supplement the spatial position relationship, we construct a convolutional triple-attention (CTA) module to attend to the inter-channel information. Thus, the spatial positional and inter-channel information is fully mined by our model to characterize the key pathological semantics in WSI. We evaluated TDT-MIL on two publicly available datasets, including CAMELYON16 and TCGA-NSCLC, with the corresponding classification accuracy and AUC up to 91.54%, 94.96%, and 90.21%, 94.36%, respectively, outperforming state-of-the-art baselines. More importantly, our model possesses a satisfactory capability in solving the imbalanced WSI classification task using an ingenious but interpretable structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信