通过深度学习驱动的 OCTA 重建与挤压和激发块整合,增强微血管成像。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-09-03 eCollection Date: 2024-10-01 DOI:10.1364/BOE.525928
Mohammad Rashidi, Georgy Kalenkov, Daniel J Green, Robert A McLaughlin
{"title":"通过深度学习驱动的 OCTA 重建与挤压和激发块整合,增强微血管成像。","authors":"Mohammad Rashidi, Georgy Kalenkov, Daniel J Green, Robert A McLaughlin","doi":"10.1364/BOE.525928","DOIUrl":null,"url":null,"abstract":"<p><p>Skin microvasculature is essential for cardiovascular health and thermoregulation in humans, yet its imaging and analysis pose significant challenges. Established methods, such as speckle decorrelation applied to optical coherence tomography (OCT) B-scans for OCT-angiography (OCTA), often require a high number of B-scans, leading to long acquisition times that are prone to motion artifacts. In our study, we propose a novel approach integrating a deep learning algorithm within our OCTA processing. By integrating a convolutional neural network with a squeeze-and-excitation block, we address these challenges in microvascular imaging. Our method enhances accuracy and reduces measurement time by efficiently utilizing local information. The Squeeze-and-Excitation block further improves stability and accuracy by dynamically recalibrating features, highlighting the advantages of deep learning in this domain.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5592-5608"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482165/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced microvascular imaging through deep learning-driven OCTA reconstruction with squeeze-and-excitation block integration.\",\"authors\":\"Mohammad Rashidi, Georgy Kalenkov, Daniel J Green, Robert A McLaughlin\",\"doi\":\"10.1364/BOE.525928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin microvasculature is essential for cardiovascular health and thermoregulation in humans, yet its imaging and analysis pose significant challenges. Established methods, such as speckle decorrelation applied to optical coherence tomography (OCT) B-scans for OCT-angiography (OCTA), often require a high number of B-scans, leading to long acquisition times that are prone to motion artifacts. In our study, we propose a novel approach integrating a deep learning algorithm within our OCTA processing. By integrating a convolutional neural network with a squeeze-and-excitation block, we address these challenges in microvascular imaging. Our method enhances accuracy and reduces measurement time by efficiently utilizing local information. The Squeeze-and-Excitation block further improves stability and accuracy by dynamically recalibrating features, highlighting the advantages of deep learning in this domain.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 10\",\"pages\":\"5592-5608\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.525928\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.525928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

皮肤微血管对人类的心血管健康和体温调节至关重要,但其成像和分析却面临巨大挑战。既有的方法,如应用于光学相干断层扫描(OCT)B扫描的斑点相关技术(speckle decorrelation),往往需要大量的B扫描,导致采集时间过长,容易产生运动伪影。在我们的研究中,我们提出了一种在 OCTA 处理中集成深度学习算法的新方法。通过将卷积神经网络与挤压激发块集成,我们解决了微血管成像中的这些难题。我们的方法通过有效利用局部信息,提高了准确性并缩短了测量时间。挤压激励块通过动态重新校准特征,进一步提高了稳定性和准确性,突出了深度学习在这一领域的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced microvascular imaging through deep learning-driven OCTA reconstruction with squeeze-and-excitation block integration.

Skin microvasculature is essential for cardiovascular health and thermoregulation in humans, yet its imaging and analysis pose significant challenges. Established methods, such as speckle decorrelation applied to optical coherence tomography (OCT) B-scans for OCT-angiography (OCTA), often require a high number of B-scans, leading to long acquisition times that are prone to motion artifacts. In our study, we propose a novel approach integrating a deep learning algorithm within our OCTA processing. By integrating a convolutional neural network with a squeeze-and-excitation block, we address these challenges in microvascular imaging. Our method enhances accuracy and reduces measurement time by efficiently utilizing local information. The Squeeze-and-Excitation block further improves stability and accuracy by dynamically recalibrating features, highlighting the advantages of deep learning in this domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信