用于学习生态瞬时评估数据的异质群体动态的时间生成模型。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae115
Soohyun Kim, Young-Geun Kim, Yuanjia Wang
{"title":"用于学习生态瞬时评估数据的异质群体动态的时间生成模型。","authors":"Soohyun Kim, Young-Geun Kim, Yuanjia Wang","doi":"10.1093/biomtc/ujae115","DOIUrl":null,"url":null,"abstract":"<p><p>One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of ecological momentary assessments that capture multiple responses in real-time at high frequency. However, ecological momentary assessment data are often multi-dimensional, correlated, and hierarchical. Mixed-effect models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The recurrent temporal restricted Boltzmann machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the HDRBM, to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world ecological momentary assessment datasets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for ecological momentary assessment studies.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal generative models for learning heterogeneous group dynamics of ecological momentary assessment data.\",\"authors\":\"Soohyun Kim, Young-Geun Kim, Yuanjia Wang\",\"doi\":\"10.1093/biomtc/ujae115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of ecological momentary assessments that capture multiple responses in real-time at high frequency. However, ecological momentary assessment data are often multi-dimensional, correlated, and hierarchical. Mixed-effect models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The recurrent temporal restricted Boltzmann machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the HDRBM, to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world ecological momentary assessment datasets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for ecological momentary assessment studies.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae115\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精准精神病学的目标之一是考虑到潜在的动态过程,以个性化的方式描述精神障碍的特征。移动技术的最新进展使得生态学瞬间评估的收集成为可能,这种评估可以高频率地实时捕捉多种反应。然而,生态瞬间评估数据通常是多维、相关和分层的。混合效应模型是常用的模型,但可能需要对固定效应、随机效应和相关结构做出限制性假设。递归时空受限玻尔兹曼机(RTRBM)是一种生成式神经网络,可用于建立时空数据模型,但现有的大多数 RTRBM 方法都没有考虑到基于可用协变量的种群内群体动态的潜在异质性。在本文中,我们提出了一种新的时间生成模型--HDRBM,用于学习异质性群体动态,并在模拟和真实世界的生态瞬时评估数据集上证明了这种方法的有效性。我们表明,通过纳入协变量,HDRBM 可以提高准确性和可解释性,探索参与者群体动态的潜在驱动因素,并可作为生态瞬时评估研究的生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal generative models for learning heterogeneous group dynamics of ecological momentary assessment data.

One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of ecological momentary assessments that capture multiple responses in real-time at high frequency. However, ecological momentary assessment data are often multi-dimensional, correlated, and hierarchical. Mixed-effect models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The recurrent temporal restricted Boltzmann machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the HDRBM, to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world ecological momentary assessment datasets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for ecological momentary assessment studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信