基于多相信息融合框架和时空预测模块的四相 CT 病灶识别。

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Shaohua Qiao, Mengfan Xue, Yan Zuo, Jiannan Zheng, Haodong Jiang, Xiangai Zeng, Dongliang Peng
{"title":"基于多相信息融合框架和时空预测模块的四相 CT 病灶识别。","authors":"Shaohua Qiao, Mengfan Xue, Yan Zuo, Jiannan Zheng, Haodong Jiang, Xiangai Zeng, Dongliang Peng","doi":"10.1186/s12938-024-01297-x","DOIUrl":null,"url":null,"abstract":"<p><p>Multiphase information fusion and spatiotemporal feature modeling play a crucial role in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase CT lesion recognition algorithm based on multiphase information fusion framework and spatiotemporal prediction module. Specifically, the multiphase information fusion framework uses the interactive perception mechanism to realize the channel-spatial information interactive weighting between multiphase features. In the spatiotemporal prediction module, we design a 1D deep residual network to integrate multiphase feature vectors, and use the GRU architecture to model the temporal enhancement information between CT slices. In addition, we employ CT image pseudo-color processing for data augmentation and train the whole network based on a multi-task learning framework. We verify the proposed network on a four-phase CT dataset. The experimental results show that the proposed network can effectively fuse the multi-phase information and model the temporal enhancement information between CT slices, showing excellent performance in lesion recognition.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"103"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492744/pdf/","citationCount":"0","resultStr":"{\"title\":\"Four-phase CT lesion recognition based on multi-phase information fusion framework and spatiotemporal prediction module.\",\"authors\":\"Shaohua Qiao, Mengfan Xue, Yan Zuo, Jiannan Zheng, Haodong Jiang, Xiangai Zeng, Dongliang Peng\",\"doi\":\"10.1186/s12938-024-01297-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiphase information fusion and spatiotemporal feature modeling play a crucial role in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase CT lesion recognition algorithm based on multiphase information fusion framework and spatiotemporal prediction module. Specifically, the multiphase information fusion framework uses the interactive perception mechanism to realize the channel-spatial information interactive weighting between multiphase features. In the spatiotemporal prediction module, we design a 1D deep residual network to integrate multiphase feature vectors, and use the GRU architecture to model the temporal enhancement information between CT slices. In addition, we employ CT image pseudo-color processing for data augmentation and train the whole network based on a multi-task learning framework. We verify the proposed network on a four-phase CT dataset. The experimental results show that the proposed network can effectively fuse the multi-phase information and model the temporal enhancement information between CT slices, showing excellent performance in lesion recognition.</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"23 1\",\"pages\":\"103\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492744/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01297-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01297-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

多相信息融合和时空特征建模在四相 CT 病灶识别任务中起着至关重要的作用。本文提出了一种基于多相信息融合框架和时空预测模块的四相 CT 病灶识别算法。具体来说,多相信息融合框架利用交互感知机制实现多相特征之间的信道空间信息交互加权。在时空预测模块中,我们设计了一维深度残差网络来整合多相特征向量,并使用 GRU 架构对 CT 切片之间的时间增强信息进行建模。此外,我们还利用 CT 图像伪彩色处理进行数据增强,并基于多任务学习框架训练整个网络。我们在四期 CT 数据集上验证了所提出的网络。实验结果表明,所提出的网络能有效融合多相信息,并对 CT 切片间的时间增强信息进行建模,在病变识别方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-phase CT lesion recognition based on multi-phase information fusion framework and spatiotemporal prediction module.

Multiphase information fusion and spatiotemporal feature modeling play a crucial role in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase CT lesion recognition algorithm based on multiphase information fusion framework and spatiotemporal prediction module. Specifically, the multiphase information fusion framework uses the interactive perception mechanism to realize the channel-spatial information interactive weighting between multiphase features. In the spatiotemporal prediction module, we design a 1D deep residual network to integrate multiphase feature vectors, and use the GRU architecture to model the temporal enhancement information between CT slices. In addition, we employ CT image pseudo-color processing for data augmentation and train the whole network based on a multi-task learning framework. We verify the proposed network on a four-phase CT dataset. The experimental results show that the proposed network can effectively fuse the multi-phase information and model the temporal enhancement information between CT slices, showing excellent performance in lesion recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信