{"title":"迈向想象中的语音:从脑电图信号中识别大脑状态,用于基于 BCI 的通信系统。","authors":"","doi":"10.1016/j.bbr.2024.115295","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.</div></div><div><h3>New method</h3><div>This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.</div></div><div><h3>Results</h3><div>In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (<em>θ</em>) and delta (<em>δ</em>) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.</div></div><div><h3>Conclusion</h3><div>The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems\",\"authors\":\"\",\"doi\":\"10.1016/j.bbr.2024.115295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.</div></div><div><h3>New method</h3><div>This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.</div></div><div><h3>Results</h3><div>In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (<em>θ</em>) and delta (<em>δ</em>) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.</div></div><div><h3>Conclusion</h3><div>The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824004510\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004510","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems
Background
The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.
New method
This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.
Results
In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.
Conclusion
The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.