Yongfeng Chen , Di Song , Qianqian Hou , Mengrui Ma , Xiaoyun Zhao , Tianzhi Yang , Huichao Xie , Pingtian Ding
{"title":"阳离子两亲分子作为治疗静脉畸形的新型硬化剂:氨甲环酸衍生低分子量凝胶研究。","authors":"Yongfeng Chen , Di Song , Qianqian Hou , Mengrui Ma , Xiaoyun Zhao , Tianzhi Yang , Huichao Xie , Pingtian Ding","doi":"10.1016/j.bbrc.2024.150838","DOIUrl":null,"url":null,"abstract":"<div><div>Venous malformation (VM) is a prevalent congenital vascular anomaly characterized by abnormal blood vessel growth, leading to disfigurement and dysfunction. Sclerotherapy, a minimally invasive approach, has become a primary therapeutic modality for VM, but its efficacy is hampered by the rapid dilution and potential adverse effects. In this study, we introduced a series of cationic amphiphilic molecules, fatty alcohol esters (TA6, TA8, and TA9) of tranexamic acid (TA), which self-assembled into low-molecular-weight gels (LMWGs) in water. The TA9, in particular, is released slowly when hydrogel is injected into the vein locally. Then, it damages the venous wall by destroying cell membranes and precipitating proteins, causing inflammation and thrombosis, thickening of the venous wall, effectively inducing irreversible vein fibrosis. Additionally, TA9 can be rapidly degraded into TA in plasma to reduce toxicity caused by diffusion. Overall, this study suggests that the cationic amphiphilic molecule TA9 is a promising sclerosant for VM treatment, offering a novel, effective, and safe therapeutic option with potential for clinical translation.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cationic amphiphilic molecules as novel sclerosants for venous malformation treatment: A study on tranexamic acid-derived low-molecular-weight gels\",\"authors\":\"Yongfeng Chen , Di Song , Qianqian Hou , Mengrui Ma , Xiaoyun Zhao , Tianzhi Yang , Huichao Xie , Pingtian Ding\",\"doi\":\"10.1016/j.bbrc.2024.150838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Venous malformation (VM) is a prevalent congenital vascular anomaly characterized by abnormal blood vessel growth, leading to disfigurement and dysfunction. Sclerotherapy, a minimally invasive approach, has become a primary therapeutic modality for VM, but its efficacy is hampered by the rapid dilution and potential adverse effects. In this study, we introduced a series of cationic amphiphilic molecules, fatty alcohol esters (TA6, TA8, and TA9) of tranexamic acid (TA), which self-assembled into low-molecular-weight gels (LMWGs) in water. The TA9, in particular, is released slowly when hydrogel is injected into the vein locally. Then, it damages the venous wall by destroying cell membranes and precipitating proteins, causing inflammation and thrombosis, thickening of the venous wall, effectively inducing irreversible vein fibrosis. Additionally, TA9 can be rapidly degraded into TA in plasma to reduce toxicity caused by diffusion. Overall, this study suggests that the cationic amphiphilic molecule TA9 is a promising sclerosant for VM treatment, offering a novel, effective, and safe therapeutic option with potential for clinical translation.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24013743\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013743","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cationic amphiphilic molecules as novel sclerosants for venous malformation treatment: A study on tranexamic acid-derived low-molecular-weight gels
Venous malformation (VM) is a prevalent congenital vascular anomaly characterized by abnormal blood vessel growth, leading to disfigurement and dysfunction. Sclerotherapy, a minimally invasive approach, has become a primary therapeutic modality for VM, but its efficacy is hampered by the rapid dilution and potential adverse effects. In this study, we introduced a series of cationic amphiphilic molecules, fatty alcohol esters (TA6, TA8, and TA9) of tranexamic acid (TA), which self-assembled into low-molecular-weight gels (LMWGs) in water. The TA9, in particular, is released slowly when hydrogel is injected into the vein locally. Then, it damages the venous wall by destroying cell membranes and precipitating proteins, causing inflammation and thrombosis, thickening of the venous wall, effectively inducing irreversible vein fibrosis. Additionally, TA9 can be rapidly degraded into TA in plasma to reduce toxicity caused by diffusion. Overall, this study suggests that the cationic amphiphilic molecule TA9 is a promising sclerosant for VM treatment, offering a novel, effective, and safe therapeutic option with potential for clinical translation.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics