有机肥在热带山区农业生态系统生产的蔬菜中铅转移中的作用。

IF 3.7 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Andrés Calderín García, Nelson Moura Brasil do Amaral Sobrinho
{"title":"有机肥在热带山区农业生态系统生产的蔬菜中铅转移中的作用。","authors":"Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Andrés Calderín García, Nelson Moura Brasil do Amaral Sobrinho","doi":"10.1007/s00244-024-01094-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between the aerobic transformation of organic matter (OM) and the bioavailability of lead to plants may allow the safe application of organic fertilizers (OF) in agriculture. The present study aimed to elucidate the relationship of different OM structures with Pb, revealing the action of OF (poultry litter) on Pb dynamics, presenting the effects of OM transformations on bioavailability and transfer to vegetables produced in tropical mountain agroecosystems (TMA). The association of Pb with hydrophilic structures (CAlk-O and CAlk-di-O) during the aerobic transformation of poultry litter (PL) contributes to the increase in the water-soluble form of this metal (3.17-15.30%). The structural changes promoted by the transformation of OM, in addition to reducing the adsorption capacity of Pb in PL (Kd reduction from 1135.50 to 87.49), favor the formation of outer-sphere complexes. PL that have a more labile structure, i.e., those that are less humified, have greater affinity for Pb. The greater affinity of Pb for labile structures that are preserved in PL during OM transformations contributed to its increase and transport to edible plant parts. Considering the edible parts of vegetables grown in TMA and fertilized with fresh PL, 100% of broccoli, 91.78% of cabbage, 80.00% of tomato, 65.96% of parsley, 49.19% of lettuce, and 32.88% of cauliflower showed Pb contamination that exceeded the permitted level. Therefore, OF contributes to lead contamination of food produced in TMA, representing a risk to human health. Studies are needed to propose additional treatments for this residue before its use.</p>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Organic Fertilizer in the Transfer of Lead to Vegetables Produced in Tropical Mountain Agroecosystems.\",\"authors\":\"Camila da Costa Barros de Souza, Erica Souto Abreu Lima, Andrés Calderín García, Nelson Moura Brasil do Amaral Sobrinho\",\"doi\":\"10.1007/s00244-024-01094-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the relationship between the aerobic transformation of organic matter (OM) and the bioavailability of lead to plants may allow the safe application of organic fertilizers (OF) in agriculture. The present study aimed to elucidate the relationship of different OM structures with Pb, revealing the action of OF (poultry litter) on Pb dynamics, presenting the effects of OM transformations on bioavailability and transfer to vegetables produced in tropical mountain agroecosystems (TMA). The association of Pb with hydrophilic structures (CAlk-O and CAlk-di-O) during the aerobic transformation of poultry litter (PL) contributes to the increase in the water-soluble form of this metal (3.17-15.30%). The structural changes promoted by the transformation of OM, in addition to reducing the adsorption capacity of Pb in PL (Kd reduction from 1135.50 to 87.49), favor the formation of outer-sphere complexes. PL that have a more labile structure, i.e., those that are less humified, have greater affinity for Pb. The greater affinity of Pb for labile structures that are preserved in PL during OM transformations contributed to its increase and transport to edible plant parts. Considering the edible parts of vegetables grown in TMA and fertilized with fresh PL, 100% of broccoli, 91.78% of cabbage, 80.00% of tomato, 65.96% of parsley, 49.19% of lettuce, and 32.88% of cauliflower showed Pb contamination that exceeded the permitted level. Therefore, OF contributes to lead contamination of food produced in TMA, representing a risk to human health. Studies are needed to propose additional treatments for this residue before its use.</p>\",\"PeriodicalId\":8377,\"journal\":{\"name\":\"Archives of Environmental Contamination and Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00244-024-01094-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00244-024-01094-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解有机物(OM)的有氧转化与植物对铅的生物利用率之间的关系,有助于在农业中安全施用有机肥料(OF)。本研究旨在阐明不同有机物结构与铅的关系,揭示有机肥料(家禽粪便)对铅动态的作用,介绍有机物转化对生物利用率的影响以及向热带山区农业生态系统(TMA)中生产的蔬菜转移铅的情况。在家禽粪便(PL)的有氧转化过程中,铅与亲水结构(CAlk-O 和 CAlk-di-O)的结合导致这种金属的水溶性增加(3.17-15.30%)。OM 转化所促进的结构变化,除了降低了铅在 PL 中的吸附能力(Kd 从 1135.50 降至 87.49),还有利于形成外球复合物。具有更易变结构的聚乳酸,即腐殖化程度较低的聚乳酸,对铅的亲和力更大。在有机物转化过程中,铅与保存在聚乳酸中的易变结构的亲和力更大,这有助于铅的增加和向植物可食用部分的迁移。考虑到在 TMA 中种植并施用新鲜 PL 肥料的蔬菜的可食用部分,100% 的西兰花、91.78% 的卷心菜、80.00% 的番茄、65.96% 的香菜、49.19% 的莴苣和 32.88% 的花椰菜的铅污染超过了允许水平。因此,OF 造成了东京都地区食品的铅污染,对人类健康构成风险。在使用这种残留物之前,需要进行研究,提出其他处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Organic Fertilizer in the Transfer of Lead to Vegetables Produced in Tropical Mountain Agroecosystems.

Understanding the relationship between the aerobic transformation of organic matter (OM) and the bioavailability of lead to plants may allow the safe application of organic fertilizers (OF) in agriculture. The present study aimed to elucidate the relationship of different OM structures with Pb, revealing the action of OF (poultry litter) on Pb dynamics, presenting the effects of OM transformations on bioavailability and transfer to vegetables produced in tropical mountain agroecosystems (TMA). The association of Pb with hydrophilic structures (CAlk-O and CAlk-di-O) during the aerobic transformation of poultry litter (PL) contributes to the increase in the water-soluble form of this metal (3.17-15.30%). The structural changes promoted by the transformation of OM, in addition to reducing the adsorption capacity of Pb in PL (Kd reduction from 1135.50 to 87.49), favor the formation of outer-sphere complexes. PL that have a more labile structure, i.e., those that are less humified, have greater affinity for Pb. The greater affinity of Pb for labile structures that are preserved in PL during OM transformations contributed to its increase and transport to edible plant parts. Considering the edible parts of vegetables grown in TMA and fertilized with fresh PL, 100% of broccoli, 91.78% of cabbage, 80.00% of tomato, 65.96% of parsley, 49.19% of lettuce, and 32.88% of cauliflower showed Pb contamination that exceeded the permitted level. Therefore, OF contributes to lead contamination of food produced in TMA, representing a risk to human health. Studies are needed to propose additional treatments for this residue before its use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
63
审稿时长
8-16 weeks
期刊介绍: Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信