Carly Jasmine Eakin, Lisa Williams, Jeremy Moore, Mandy Annis, David Best, Sarah Warner, William Bowerman, Latice Fuentes, Kendall Simon, Brandon Armstrong
{"title":"研究五大湖支流大坝上下的白头鹰污染物暴露和生殖风险。","authors":"Carly Jasmine Eakin, Lisa Williams, Jeremy Moore, Mandy Annis, David Best, Sarah Warner, William Bowerman, Latice Fuentes, Kendall Simon, Brandon Armstrong","doi":"10.1007/s00244-024-01090-w","DOIUrl":null,"url":null,"abstract":"<p><p>Removing lowermost dams can reestablish fish passage on Great Lakes tributaries. This can increase the transfer of contaminants from anadromous fish to piscivorous wildlife upstream; however, concentrations of bioaccumulative contaminants in Great Lakes fish have decreased over the last several decades. We analyzed concentrations of PCBs and the toxic equivalence (TEQs) calculated from PCBs, DDTs, other organochlorine pesticides, and PBDEs in the plasma of bald eagle nestlings above and below lowermost dams on five river systems in Michigan from 1999 to 2013. We examined relationships between contaminants and metrics of reproductive success from 1997 to 2018, including the effects of year and location relative to the lowermost dam. Σ<sub>20</sub>PCB and p,p'-DDE were important in characterizing differences in contaminant mixtures above and below dams. Concentrations of contaminants were generally greater below dams than above. There were generally greater nest success and more nestlings per nest below dams, but nest location explained little variability (R<sup>2</sup> values = 0.03-0.15). Neither Σ<sub>20</sub>PCB nor p,p'-DDE was a significant predictor of 5-year productivity means by river reach despite concentrations exceeding previously established effects thresholds for healthy bald eagle populations in the Great Lakes (≥ 1 nestling/nest). Our study indicates that dams may continue to reduce the upstream movement of contaminants to bald eagles, but at the measured concentrations, contaminants did not impair productivity and reproductive success as indicated by nestlings per nest. Additional information about population dynamics could clarify population-level effects of contaminants on bald eagles and to what degree these populations are self-sustaining throughout the Great Lakes.</p>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Bald Eagle Contaminant Exposure and Reproductive Risk Above and Below Dams on Great Lakes Tributaries.\",\"authors\":\"Carly Jasmine Eakin, Lisa Williams, Jeremy Moore, Mandy Annis, David Best, Sarah Warner, William Bowerman, Latice Fuentes, Kendall Simon, Brandon Armstrong\",\"doi\":\"10.1007/s00244-024-01090-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Removing lowermost dams can reestablish fish passage on Great Lakes tributaries. This can increase the transfer of contaminants from anadromous fish to piscivorous wildlife upstream; however, concentrations of bioaccumulative contaminants in Great Lakes fish have decreased over the last several decades. We analyzed concentrations of PCBs and the toxic equivalence (TEQs) calculated from PCBs, DDTs, other organochlorine pesticides, and PBDEs in the plasma of bald eagle nestlings above and below lowermost dams on five river systems in Michigan from 1999 to 2013. We examined relationships between contaminants and metrics of reproductive success from 1997 to 2018, including the effects of year and location relative to the lowermost dam. Σ<sub>20</sub>PCB and p,p'-DDE were important in characterizing differences in contaminant mixtures above and below dams. Concentrations of contaminants were generally greater below dams than above. There were generally greater nest success and more nestlings per nest below dams, but nest location explained little variability (R<sup>2</sup> values = 0.03-0.15). Neither Σ<sub>20</sub>PCB nor p,p'-DDE was a significant predictor of 5-year productivity means by river reach despite concentrations exceeding previously established effects thresholds for healthy bald eagle populations in the Great Lakes (≥ 1 nestling/nest). Our study indicates that dams may continue to reduce the upstream movement of contaminants to bald eagles, but at the measured concentrations, contaminants did not impair productivity and reproductive success as indicated by nestlings per nest. Additional information about population dynamics could clarify population-level effects of contaminants on bald eagles and to what degree these populations are self-sustaining throughout the Great Lakes.</p>\",\"PeriodicalId\":8377,\"journal\":{\"name\":\"Archives of Environmental Contamination and Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00244-024-01090-w\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00244-024-01090-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Examining Bald Eagle Contaminant Exposure and Reproductive Risk Above and Below Dams on Great Lakes Tributaries.
Removing lowermost dams can reestablish fish passage on Great Lakes tributaries. This can increase the transfer of contaminants from anadromous fish to piscivorous wildlife upstream; however, concentrations of bioaccumulative contaminants in Great Lakes fish have decreased over the last several decades. We analyzed concentrations of PCBs and the toxic equivalence (TEQs) calculated from PCBs, DDTs, other organochlorine pesticides, and PBDEs in the plasma of bald eagle nestlings above and below lowermost dams on five river systems in Michigan from 1999 to 2013. We examined relationships between contaminants and metrics of reproductive success from 1997 to 2018, including the effects of year and location relative to the lowermost dam. Σ20PCB and p,p'-DDE were important in characterizing differences in contaminant mixtures above and below dams. Concentrations of contaminants were generally greater below dams than above. There were generally greater nest success and more nestlings per nest below dams, but nest location explained little variability (R2 values = 0.03-0.15). Neither Σ20PCB nor p,p'-DDE was a significant predictor of 5-year productivity means by river reach despite concentrations exceeding previously established effects thresholds for healthy bald eagle populations in the Great Lakes (≥ 1 nestling/nest). Our study indicates that dams may continue to reduce the upstream movement of contaminants to bald eagles, but at the measured concentrations, contaminants did not impair productivity and reproductive success as indicated by nestlings per nest. Additional information about population dynamics could clarify population-level effects of contaminants on bald eagles and to what degree these populations are self-sustaining throughout the Great Lakes.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.