{"title":"体内试验研究:评估脉冲流体冲击动脉瘤壁导致动脉瘤壁膨胀的兔子模型。","authors":"Guillaume Plet, Jolan Raviol, Jean-Baptiste Langlois, Salim Si-Mohamed, Hélène Magoariec, Cyril Pailler-Mattei","doi":"10.1007/s10439-024-03633-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.</p><p><strong>Methods: </strong>In this preliminary study conducted on a rabbit animal model, an aneurysm was induced on the carotid artery, followed by deformation of the aneurysm sac wall using the DDP. The change in luminal volume of the aneurysm sac induced by the deformation of the vascular wall was then quantified.</p><p><strong>Results: </strong>The initial experimental results demonstrated an increase in the luminal volume of the aneurysm sac in relation to the increased flow rate of the fluid pulsed by the DDP onto the arterial wall. Measurement of the pressure generated by the DDP in relation to the different flow rate values imposed by the pulsation system revealed experimental values of the same order of magnitude as dynamic blood pressure. Furthermore, theoretical pressure values on the deformed area, calculated using Euler's theorem, appeared to be correlated with experimental pressure measurements.</p><p><strong>Conclusion: </strong>This equivalence between theory and experiment is a key element in the use of the DDP for estimating the mechanical properties of the vascular wall, particularly for the use of finite element models to characterise the stress state of the deformed vascular wall. This preliminary work thus presents a novel, innovative, and promising approach for the evaluation and management of the risk of rupture of unruptured intracranial aneurysms.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An In vivo Pilot Study to Estimate the Swelling of the Aneurysm Wall Rabbit Model Generated with Pulsed Fluid Against the Aneurysm Wall.\",\"authors\":\"Guillaume Plet, Jolan Raviol, Jean-Baptiste Langlois, Salim Si-Mohamed, Hélène Magoariec, Cyril Pailler-Mattei\",\"doi\":\"10.1007/s10439-024-03633-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.</p><p><strong>Methods: </strong>In this preliminary study conducted on a rabbit animal model, an aneurysm was induced on the carotid artery, followed by deformation of the aneurysm sac wall using the DDP. The change in luminal volume of the aneurysm sac induced by the deformation of the vascular wall was then quantified.</p><p><strong>Results: </strong>The initial experimental results demonstrated an increase in the luminal volume of the aneurysm sac in relation to the increased flow rate of the fluid pulsed by the DDP onto the arterial wall. Measurement of the pressure generated by the DDP in relation to the different flow rate values imposed by the pulsation system revealed experimental values of the same order of magnitude as dynamic blood pressure. Furthermore, theoretical pressure values on the deformed area, calculated using Euler's theorem, appeared to be correlated with experimental pressure measurements.</p><p><strong>Conclusion: </strong>This equivalence between theory and experiment is a key element in the use of the DDP for estimating the mechanical properties of the vascular wall, particularly for the use of finite element models to characterise the stress state of the deformed vascular wall. This preliminary work thus presents a novel, innovative, and promising approach for the evaluation and management of the risk of rupture of unruptured intracranial aneurysms.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03633-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03633-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An In vivo Pilot Study to Estimate the Swelling of the Aneurysm Wall Rabbit Model Generated with Pulsed Fluid Against the Aneurysm Wall.
Purpose: This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.
Methods: In this preliminary study conducted on a rabbit animal model, an aneurysm was induced on the carotid artery, followed by deformation of the aneurysm sac wall using the DDP. The change in luminal volume of the aneurysm sac induced by the deformation of the vascular wall was then quantified.
Results: The initial experimental results demonstrated an increase in the luminal volume of the aneurysm sac in relation to the increased flow rate of the fluid pulsed by the DDP onto the arterial wall. Measurement of the pressure generated by the DDP in relation to the different flow rate values imposed by the pulsation system revealed experimental values of the same order of magnitude as dynamic blood pressure. Furthermore, theoretical pressure values on the deformed area, calculated using Euler's theorem, appeared to be correlated with experimental pressure measurements.
Conclusion: This equivalence between theory and experiment is a key element in the use of the DDP for estimating the mechanical properties of the vascular wall, particularly for the use of finite element models to characterise the stress state of the deformed vascular wall. This preliminary work thus presents a novel, innovative, and promising approach for the evaluation and management of the risk of rupture of unruptured intracranial aneurysms.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.