{"title":"深度学习重建提高了低keV双能CT中Adamkiewicz动脉的图像质量。","authors":"Fuminari Tatsugami, Toru Higaki, Ikuo Kawashita, Chikako Fujioka, Yuko Nakamura, Shinya Takahashi, Kazuo Awai","doi":"10.1177/02841851241288507","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-keV virtual monoenergetic images (VMIs) of dual-energy computed tomography (CT) enhances iodine contrast for detecting small arteries like the Adamkiewicz artery (AKA), but image noise can be problematic. Deep-learning image reconstruction (DLIR) effectively reduces noise without sacrificing image quality.</p><p><strong>Purpose: </strong>To evaluate whether DLIR on low-keV VMIs of dual-energy CT scans improves the visualization of the AKA.</p><p><strong>Material and methods: </strong>We enrolled 29 patients who underwent CT angiography before aortic repair. VMIs obtained at 70 and 40 keV were reconstructed using hybrid iterative reconstruction (HIR), and 40 keV VMIs were reconstructed using DLIR. The image noise of the spinal cord, the maximum CT values of the anterior spinal artery (ASA), and the contrast-to-noise ratio (CNR) of the ASA were compared. The overall image quality and the delineation of the AKA were evaluated on a 4-point score (1 = poor, 4 = excellent).</p><p><strong>Results: </strong>The mean image noise of the spinal cord was significantly lower on 40-keV DLIR than on 40-keV HIR scans; they were significantly higher than on 70-keV HIR images. The CNR of the ASA was highest on the 40-keV DLIR images among the three reconstruction images. The mean image quality scores for 40-keV DLIR and 70-keV HIR scans were comparable, and higher than of 40-keV HIR images. The mean delineation scores for 40-keV HIR and 40-keV DLIR scans were significantly higher than for 70-keV HIR images.</p><p><strong>Conclusion: </strong>Visualization of the AKA was significantly better on low-keV VMIs subjected to DLIR than conventional HIR images.</p>","PeriodicalId":7143,"journal":{"name":"Acta radiologica","volume":" ","pages":"2841851241288507"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning reconstruction enhances image quality of Adamkiewicz Artery in low-keV dual-energy CT.\",\"authors\":\"Fuminari Tatsugami, Toru Higaki, Ikuo Kawashita, Chikako Fujioka, Yuko Nakamura, Shinya Takahashi, Kazuo Awai\",\"doi\":\"10.1177/02841851241288507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Low-keV virtual monoenergetic images (VMIs) of dual-energy computed tomography (CT) enhances iodine contrast for detecting small arteries like the Adamkiewicz artery (AKA), but image noise can be problematic. Deep-learning image reconstruction (DLIR) effectively reduces noise without sacrificing image quality.</p><p><strong>Purpose: </strong>To evaluate whether DLIR on low-keV VMIs of dual-energy CT scans improves the visualization of the AKA.</p><p><strong>Material and methods: </strong>We enrolled 29 patients who underwent CT angiography before aortic repair. VMIs obtained at 70 and 40 keV were reconstructed using hybrid iterative reconstruction (HIR), and 40 keV VMIs were reconstructed using DLIR. The image noise of the spinal cord, the maximum CT values of the anterior spinal artery (ASA), and the contrast-to-noise ratio (CNR) of the ASA were compared. The overall image quality and the delineation of the AKA were evaluated on a 4-point score (1 = poor, 4 = excellent).</p><p><strong>Results: </strong>The mean image noise of the spinal cord was significantly lower on 40-keV DLIR than on 40-keV HIR scans; they were significantly higher than on 70-keV HIR images. The CNR of the ASA was highest on the 40-keV DLIR images among the three reconstruction images. The mean image quality scores for 40-keV DLIR and 70-keV HIR scans were comparable, and higher than of 40-keV HIR images. The mean delineation scores for 40-keV HIR and 40-keV DLIR scans were significantly higher than for 70-keV HIR images.</p><p><strong>Conclusion: </strong>Visualization of the AKA was significantly better on low-keV VMIs subjected to DLIR than conventional HIR images.</p>\",\"PeriodicalId\":7143,\"journal\":{\"name\":\"Acta radiologica\",\"volume\":\" \",\"pages\":\"2841851241288507\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta radiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/02841851241288507\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02841851241288507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Deep-learning reconstruction enhances image quality of Adamkiewicz Artery in low-keV dual-energy CT.
Background: Low-keV virtual monoenergetic images (VMIs) of dual-energy computed tomography (CT) enhances iodine contrast for detecting small arteries like the Adamkiewicz artery (AKA), but image noise can be problematic. Deep-learning image reconstruction (DLIR) effectively reduces noise without sacrificing image quality.
Purpose: To evaluate whether DLIR on low-keV VMIs of dual-energy CT scans improves the visualization of the AKA.
Material and methods: We enrolled 29 patients who underwent CT angiography before aortic repair. VMIs obtained at 70 and 40 keV were reconstructed using hybrid iterative reconstruction (HIR), and 40 keV VMIs were reconstructed using DLIR. The image noise of the spinal cord, the maximum CT values of the anterior spinal artery (ASA), and the contrast-to-noise ratio (CNR) of the ASA were compared. The overall image quality and the delineation of the AKA were evaluated on a 4-point score (1 = poor, 4 = excellent).
Results: The mean image noise of the spinal cord was significantly lower on 40-keV DLIR than on 40-keV HIR scans; they were significantly higher than on 70-keV HIR images. The CNR of the ASA was highest on the 40-keV DLIR images among the three reconstruction images. The mean image quality scores for 40-keV DLIR and 70-keV HIR scans were comparable, and higher than of 40-keV HIR images. The mean delineation scores for 40-keV HIR and 40-keV DLIR scans were significantly higher than for 70-keV HIR images.
Conclusion: Visualization of the AKA was significantly better on low-keV VMIs subjected to DLIR than conventional HIR images.
期刊介绍:
Acta Radiologica publishes articles on all aspects of radiology, from clinical radiology to experimental work. It is known for articles based on experimental work and contrast media research, giving priority to scientific original papers. The distinguished international editorial board also invite review articles, short communications and technical and instrumental notes.