真菌群落的遗传多样性有助于提高碳酸浸渍和发酵后咖啡饮料的感官质量。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-11-01 Epub Date: 2024-10-19 DOI:10.1007/s13205-024-04099-z
Thaynara Lorenzoni Entringer, José Maria Rodrigues da Luz, Tomás Gomes Reis Veloso, Lucas Louzada Pereira, Karen Mirella Souza Menezes, Dério Brioschi Júnior, Maria Catarina Megumi Kasuya, Marliane de Cássia Soares da Silva
{"title":"真菌群落的遗传多样性有助于提高碳酸浸渍和发酵后咖啡饮料的感官质量。","authors":"Thaynara Lorenzoni Entringer, José Maria Rodrigues da Luz, Tomás Gomes Reis Veloso, Lucas Louzada Pereira, Karen Mirella Souza Menezes, Dério Brioschi Júnior, Maria Catarina Megumi Kasuya, Marliane de Cássia Soares da Silva","doi":"10.1007/s13205-024-04099-z","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of <i>Coffea arabica</i> fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast <i>Pichia cephalocereana</i> was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation.\",\"authors\":\"Thaynara Lorenzoni Entringer, José Maria Rodrigues da Luz, Tomás Gomes Reis Veloso, Lucas Louzada Pereira, Karen Mirella Souza Menezes, Dério Brioschi Júnior, Maria Catarina Megumi Kasuya, Marliane de Cássia Soares da Silva\",\"doi\":\"10.1007/s13205-024-04099-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of <i>Coffea arabica</i> fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast <i>Pichia cephalocereana</i> was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04099-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04099-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解微生物对咖啡发酵的影响对于确保感官质量和食品安全至关重要。分析发酵过程中微生物群落的动态有助于更好地了解微生物的有益和有害影响,并帮助选择启动培养物以提高咖啡质量。此外,咖啡果实碳酸浸渍产生的厌氧环境会抑制有氧呼吸过程,刺激发酵代谢,从而调节咖啡发酵过程中的微生物群落。本研究评估了碳酸浸渍对阿拉比卡咖啡果实在 18、28 和 38 °C 温度下发酵 24、48、72、96 和 120 小时期间真菌群落动态的影响。在咖啡发酵过程中,真菌群落随着时间的推移而变化,在 18 和 28 °C 温度下,72 小时后的变化最为显著;但在 38 °C 温度下,真菌组成的变化更大,120 小时后真菌多样性最高。这些结果表明,温度和发酵条件会影响咖啡发酵过程中的真菌群落。较低的温度可能有利于更稳定的微生物环境,而较高的温度则会导致更剧烈的变化。因此,我们从 NGS 中获得的数据有助于咖啡果实发酵过程中真菌的鉴定、分离和代谢特征描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic diversity of the fungal community that contributes to the sensory quality of coffee beverage after carbonic maceration and fermentation.

Understanding the effects of microorganisms on coffee fermentation is crucial to ensure sensory quality and food security. The analysis of the dynamics of the microbial community during fermentation can contribute to a better understanding of the beneficial and harmful effects of microorganisms and help select starter cultures to improve coffee quality. Furthermore, the anaerobic environment produced by carbonic maceration of the coffee fruits inhibits aerobic respiratory processes and stimulates fermentative metabolism, modulating the microbial community during coffee fermentation. This study evaluated the effects of carbonic maceration in the fungal community dynamics during the fermentation of Coffea arabica fruits at 18, 28, and 38 °C for 24, 48, 72, 96, and 120 h. Fungal diversity was accompanied by high-throughput sequencing (NGS) of the Internal Transcribed Spacer (ITS) region. During the coffee fermentation, the fungal community changed over time, with the most significant changes occurring at 18 and 28 °C after 72 h. However, at 38 °C, there were greater variations in fungal composition and fungal diversity was highest after 120 h. The yeast Pichia cephalocereana was predominant in the fermentations. These results indicated that temperature and fermentation conditions influence the fungal community during coffee fermentation. Lower temperatures might favor a more stable microbial environment, while higher temperatures lead to more intense changes. Thus, our data from NGS can help in the identification, isolation, and metabolic characterization of fungi for the fermentation of coffee fruits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信