Ets2 通过加剧内皮细胞增殖和炎症反应而加剧糖尿病视网膜病变

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Song Wang, Ning Bao, Mohan Li, Dongwei Liu, Liming Tao
{"title":"Ets2 通过加剧内皮细胞增殖和炎症反应而加剧糖尿病视网膜病变","authors":"Song Wang, Ning Bao, Mohan Li, Dongwei Liu, Liming Tao","doi":"10.1007/s10528-024-10938-8","DOIUrl":null,"url":null,"abstract":"<p><p>Proliferative diabetic retinopathy (PDR), the most common type of diabetic retinopathy, is a main cause of visual and impairment blindness. Abnormal neovascularization, endothelial dysfunction, and vascular inflammation are important mechanisms for the development of PDR. Ets2 regulates angiogenesis-related genes and inflammation, however, the effect of Ets2 in PDR procession has not been clarified. Thus, this study is performed to investigate whether Ets2 exerts key functions in PDR. In this study, 10-week-old mice were used for establishing STZ-induced diabetic mice, and Ets2 expression was analyzed in retina tissues. Besides, newborn mice were applied to construct oxygen-induced retinopathy (OIR) models. The Ets2 expression, oxidative stress, and inflammation were detected in retina tissues. We found that Ets2 was highly expressed in retina tissues both in diabetic mice and OIR mice. Oxidative stress and inflammatory processes are two factors contributing to the pathogenesis of PDR. In retinal tissues of OIR mice, Ets2 knockdown inhibited expression of inflammatory mediators VEGFA, IL-6, and IL-8, and biomarkers of oxidative stress MCP-1, VCAM-1, and iNOS. ROS production was also inhibited by silencing Ets2. Ets2 deficiency inhibited endothelial cell proliferation in the retina. Furthermore, Ets2 knockdown contributed to suppressing the expression of angiogenesis-related genes VEGFA, JUNB, MMP-9, Tie2, Ang-2, and EphB4. Our study highlights that Ets2 accelerates PDR procession by promoting the proliferation of endothelial cells, oxidative stress, and inflammation, which provides a novel target against PDR.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ets2 Exacerbates Diabetic Retinopathy by Aggravating the Proliferation of Endothelial Cells and Inflammatory Response.\",\"authors\":\"Song Wang, Ning Bao, Mohan Li, Dongwei Liu, Liming Tao\",\"doi\":\"10.1007/s10528-024-10938-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proliferative diabetic retinopathy (PDR), the most common type of diabetic retinopathy, is a main cause of visual and impairment blindness. Abnormal neovascularization, endothelial dysfunction, and vascular inflammation are important mechanisms for the development of PDR. Ets2 regulates angiogenesis-related genes and inflammation, however, the effect of Ets2 in PDR procession has not been clarified. Thus, this study is performed to investigate whether Ets2 exerts key functions in PDR. In this study, 10-week-old mice were used for establishing STZ-induced diabetic mice, and Ets2 expression was analyzed in retina tissues. Besides, newborn mice were applied to construct oxygen-induced retinopathy (OIR) models. The Ets2 expression, oxidative stress, and inflammation were detected in retina tissues. We found that Ets2 was highly expressed in retina tissues both in diabetic mice and OIR mice. Oxidative stress and inflammatory processes are two factors contributing to the pathogenesis of PDR. In retinal tissues of OIR mice, Ets2 knockdown inhibited expression of inflammatory mediators VEGFA, IL-6, and IL-8, and biomarkers of oxidative stress MCP-1, VCAM-1, and iNOS. ROS production was also inhibited by silencing Ets2. Ets2 deficiency inhibited endothelial cell proliferation in the retina. Furthermore, Ets2 knockdown contributed to suppressing the expression of angiogenesis-related genes VEGFA, JUNB, MMP-9, Tie2, Ang-2, and EphB4. Our study highlights that Ets2 accelerates PDR procession by promoting the proliferation of endothelial cells, oxidative stress, and inflammation, which provides a novel target against PDR.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10938-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10938-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

增生性糖尿病视网膜病变(PDR)是糖尿病视网膜病变中最常见的类型,也是导致视力减退和失明的主要原因。血管新生异常、内皮功能障碍和血管炎症是 PDR 的重要发病机制。Ets2 可调控血管生成相关基因和炎症,但 Ets2 在 PDR 过程中的作用尚未明确。因此,本研究旨在探讨 Ets2 是否在 PDR 中发挥关键功能。本研究利用 10 周龄小鼠建立 STZ 诱导的糖尿病小鼠,并分析视网膜组织中 Ets2 的表达。此外,还利用新生小鼠构建了氧诱导视网膜病变(OIR)模型。我们检测了视网膜组织中 Ets2 的表达、氧化应激和炎症。我们发现 Ets2 在糖尿病小鼠和 OIR 小鼠的视网膜组织中均有高表达。氧化应激和炎症过程是导致 PDR 发病的两个因素。在 OIR 小鼠视网膜组织中,敲除 Ets2 可抑制炎症介质 VEGFA、IL-6 和 IL-8 的表达,以及氧化应激生物标志物 MCP-1、VCAM-1 和 iNOS 的表达。沉默 Ets2 还能抑制 ROS 的产生。Ets2 的缺失抑制了视网膜内皮细胞的增殖。此外,Ets2 基因敲除有助于抑制血管生成相关基因 VEGFA、JUNB、MMP-9、Tie2、Ang-2 和 EphB4 的表达。我们的研究强调,Ets2 通过促进内皮细胞增殖、氧化应激和炎症反应加速了 PDR 的进程,这为抗击 PDR 提供了一个新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ets2 Exacerbates Diabetic Retinopathy by Aggravating the Proliferation of Endothelial Cells and Inflammatory Response.

Proliferative diabetic retinopathy (PDR), the most common type of diabetic retinopathy, is a main cause of visual and impairment blindness. Abnormal neovascularization, endothelial dysfunction, and vascular inflammation are important mechanisms for the development of PDR. Ets2 regulates angiogenesis-related genes and inflammation, however, the effect of Ets2 in PDR procession has not been clarified. Thus, this study is performed to investigate whether Ets2 exerts key functions in PDR. In this study, 10-week-old mice were used for establishing STZ-induced diabetic mice, and Ets2 expression was analyzed in retina tissues. Besides, newborn mice were applied to construct oxygen-induced retinopathy (OIR) models. The Ets2 expression, oxidative stress, and inflammation were detected in retina tissues. We found that Ets2 was highly expressed in retina tissues both in diabetic mice and OIR mice. Oxidative stress and inflammatory processes are two factors contributing to the pathogenesis of PDR. In retinal tissues of OIR mice, Ets2 knockdown inhibited expression of inflammatory mediators VEGFA, IL-6, and IL-8, and biomarkers of oxidative stress MCP-1, VCAM-1, and iNOS. ROS production was also inhibited by silencing Ets2. Ets2 deficiency inhibited endothelial cell proliferation in the retina. Furthermore, Ets2 knockdown contributed to suppressing the expression of angiogenesis-related genes VEGFA, JUNB, MMP-9, Tie2, Ang-2, and EphB4. Our study highlights that Ets2 accelerates PDR procession by promoting the proliferation of endothelial cells, oxidative stress, and inflammation, which provides a novel target against PDR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信