确保临床卓越:Mindray SAL9000 生化免疫分析系统。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhenzhen Zou, Honghui Tang, Erya Xiao, Yu Zhou, Xuebei Yin, Zhen Hu, Yang Cai, Qingzhen Han, Lin Wang
{"title":"确保临床卓越:Mindray SAL9000 生化免疫分析系统。","authors":"Zhenzhen Zou, Honghui Tang, Erya Xiao, Yu Zhou, Xuebei Yin, Zhen Hu, Yang Cai, Qingzhen Han, Lin Wang","doi":"10.1007/s12013-024-01568-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensuring Clinical Excellence: The Mindray SAL9000 Biochemical Immunoassay System.\",\"authors\":\"Zhenzhen Zou, Honghui Tang, Erya Xiao, Yu Zhou, Xuebei Yin, Zhen Hu, Yang Cai, Qingzhen Han, Lin Wang\",\"doi\":\"10.1007/s12013-024-01568-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01568-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01568-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估Mindray SAL9000生化免疫分析自动化系统的性能和临床实验室适应性,确保其符合ISO 15189标准和相关国家要求。我们对 21 种生化分析物和 15 种免疫测定进行了全面的性能验证测试,包括精密度、准确度、线性偏差、测量范围评估、干扰测试、参考范围验证、仪器间比较和携带验证。Mindray SAL9000 在各种参数方面都表现出很高的性能,所有分析物都显示出良好的线性和最小的偏差。虽然特定的干扰物质会对某些分析物产生影响,但该系统对溶血、抗坏血酸和黄疸等常见干扰具有出色的抗干扰能力。与 BS2000M 和罗氏 702 进行的仪器间比较显示出良好的相关性,大多数参数的偏差小于 10%,但 ALT 和 AST 的偏差例外。总之,Mindray SAL9000 以其高精度、出色的准确性和宽泛的测量范围满足了临床需求,是临床门诊和急诊实验室的可靠之选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensuring Clinical Excellence: The Mindray SAL9000 Biochemical Immunoassay System.

This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信