{"title":"氮沉降和气候变化在导致路边草地植物多样性减少方面的相对重要性。","authors":"Wiene Bakker, Toine Morel, Wim Ozinga, Jeroen Scheper, Philippine Vergeer","doi":"10.1016/j.scitotenv.2024.176962","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NH<sub>x</sub> and NO<sub>y</sub>) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NO<sub>y</sub> deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176962"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relative importance of nitrogen deposition and climate change in driving plant diversity decline in roadside grasslands.\",\"authors\":\"Wiene Bakker, Toine Morel, Wim Ozinga, Jeroen Scheper, Philippine Vergeer\",\"doi\":\"10.1016/j.scitotenv.2024.176962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NH<sub>x</sub> and NO<sub>y</sub>) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NO<sub>y</sub> deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"176962\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.176962\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176962","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The relative importance of nitrogen deposition and climate change in driving plant diversity decline in roadside grasslands.
Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NHx and NOy) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NOy deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.