{"title":"城市森林不同林分中的天然挥发性有机化合物 (NVOC) 和空气中的微生物。","authors":"Xin Wan, Can Yang, Sumei Qiu, Weitao Xu, Jingwei Lian, Jiaojiao Zhang, Wei Xing, Yingdan Yuan","doi":"10.1016/j.scitotenv.2024.176964","DOIUrl":null,"url":null,"abstract":"<p><p>Natural volatile organic compounds (NVOCs) and airborne microorganisms are important elements in urban forest air that affect air quality and human health. In this study, the Zhuyu Bay urban forest in Yangzhou was selected as the research object, and gas chromatography-mass spectrometry (GC-MS) was used to detect the composition of NVOCs in different forest stands. Terpenes, heterocyclic compounds, and esters accounted for the highest proportions. We then explored the effects of NVOCs on the physiological health of each forest stand and used Kyoto Encyclopedia of Genes and Genome enrichment analysis to identify beneficial secondary metabolites. Among the identified compounds, alpha-phellandrene 1, azulene, and other terpenoids were found to possess antibacterial, anti-inflammatory, and antioxidant properties. Heterocyclic compounds, such as 4-Pyridinecarboxylic acid and visnagin, showed significant effects in the treatment of diseases. In addition, we collected and analyzed culturable airborne microorganisms in different forest stands and found that the bamboo forest had the lowest number of culturable airborne microorganisms. To further explore the influence of urban microclimates on air microorganisms and NVOCs, a partial least squares path modelling (PLS-PM) analysis was conducted. Air negative oxygen ion is an important factor affecting NVOCs, and Air moisture has a significant positive effect on bacteria proportion.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural volatile organic compounds (NVOCs) and airborne microorganisms in different stands of urban forests.\",\"authors\":\"Xin Wan, Can Yang, Sumei Qiu, Weitao Xu, Jingwei Lian, Jiaojiao Zhang, Wei Xing, Yingdan Yuan\",\"doi\":\"10.1016/j.scitotenv.2024.176964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural volatile organic compounds (NVOCs) and airborne microorganisms are important elements in urban forest air that affect air quality and human health. In this study, the Zhuyu Bay urban forest in Yangzhou was selected as the research object, and gas chromatography-mass spectrometry (GC-MS) was used to detect the composition of NVOCs in different forest stands. Terpenes, heterocyclic compounds, and esters accounted for the highest proportions. We then explored the effects of NVOCs on the physiological health of each forest stand and used Kyoto Encyclopedia of Genes and Genome enrichment analysis to identify beneficial secondary metabolites. Among the identified compounds, alpha-phellandrene 1, azulene, and other terpenoids were found to possess antibacterial, anti-inflammatory, and antioxidant properties. Heterocyclic compounds, such as 4-Pyridinecarboxylic acid and visnagin, showed significant effects in the treatment of diseases. In addition, we collected and analyzed culturable airborne microorganisms in different forest stands and found that the bamboo forest had the lowest number of culturable airborne microorganisms. To further explore the influence of urban microclimates on air microorganisms and NVOCs, a partial least squares path modelling (PLS-PM) analysis was conducted. Air negative oxygen ion is an important factor affecting NVOCs, and Air moisture has a significant positive effect on bacteria proportion.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.176964\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176964","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Natural volatile organic compounds (NVOCs) and airborne microorganisms in different stands of urban forests.
Natural volatile organic compounds (NVOCs) and airborne microorganisms are important elements in urban forest air that affect air quality and human health. In this study, the Zhuyu Bay urban forest in Yangzhou was selected as the research object, and gas chromatography-mass spectrometry (GC-MS) was used to detect the composition of NVOCs in different forest stands. Terpenes, heterocyclic compounds, and esters accounted for the highest proportions. We then explored the effects of NVOCs on the physiological health of each forest stand and used Kyoto Encyclopedia of Genes and Genome enrichment analysis to identify beneficial secondary metabolites. Among the identified compounds, alpha-phellandrene 1, azulene, and other terpenoids were found to possess antibacterial, anti-inflammatory, and antioxidant properties. Heterocyclic compounds, such as 4-Pyridinecarboxylic acid and visnagin, showed significant effects in the treatment of diseases. In addition, we collected and analyzed culturable airborne microorganisms in different forest stands and found that the bamboo forest had the lowest number of culturable airborne microorganisms. To further explore the influence of urban microclimates on air microorganisms and NVOCs, a partial least squares path modelling (PLS-PM) analysis was conducted. Air negative oxygen ion is an important factor affecting NVOCs, and Air moisture has a significant positive effect on bacteria proportion.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.