{"title":"基于蚕丝纤维的生物电子器件,用于高灵敏度、稳定和长时间的体内记录。","authors":"Huiran Yang, Ziyi Zhu, Siyuan Ni, Xueying Wang, Yanyan Nie, Chen Tao, Dujuan Zou, Wanqi Jiang, Ying Zhao, Zhitao Zhou, Liuyang Sun, Meng Li, Tiger H Tao, Keyin Liu, Xiaoling Wei","doi":"10.1016/j.bios.2024.116853","DOIUrl":null,"url":null,"abstract":"<p><p>Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"267 ","pages":"116853"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silk fibroin-based bioelectronic devices for high-sensitivity, stable, and prolonged in vivo recording.\",\"authors\":\"Huiran Yang, Ziyi Zhu, Siyuan Ni, Xueying Wang, Yanyan Nie, Chen Tao, Dujuan Zou, Wanqi Jiang, Ying Zhao, Zhitao Zhou, Liuyang Sun, Meng Li, Tiger H Tao, Keyin Liu, Xiaoling Wei\",\"doi\":\"10.1016/j.bios.2024.116853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.</p>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"267 \",\"pages\":\"116853\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bios.2024.116853\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116853","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Silk fibroin-based bioelectronic devices for high-sensitivity, stable, and prolonged in vivo recording.
Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.