Kumari Billakurthi, Thomas J. Wrobel, Udo Gowik, Andrea Bräutigam, Andreas P. M. Weber, Peter Westhoff
{"title":"C3 和 C4 花叶植物发育中叶片的转录组动态。","authors":"Kumari Billakurthi, Thomas J. Wrobel, Udo Gowik, Andrea Bräutigam, Andreas P. M. Weber, Peter Westhoff","doi":"10.1111/tpj.17059","DOIUrl":null,"url":null,"abstract":"<p>C<sub>4</sub> species have evolved more than 60 times independently from C<sub>3</sub> ancestors. This multiple and parallel evolution of the complex C<sub>4</sub> trait suggests common underlying evolutionary mechanisms, which could be identified by comparative analysis of closely related C<sub>3</sub> and C<sub>4</sub> species. Efficient C<sub>4</sub> function depends on a distinctive leaf anatomy that is characterised by enlarged, chloroplast-rich bundle sheath cells and narrow vein spacing. To elucidate the molecular mechanisms that generate the Kranz anatomy, we analysed a developmental series of leaves from the C<sub>4</sub> plant <i>Flaveria bidentis</i> and the closely related C<sub>3</sub> species <i>Flaveria robusta</i> by comparing anatomies and transcriptomes. Vascular density measurements of all nine leaf developmental stages identified three leaf anatomical zones whose proportions vary with respect to the developmental stage. We then deconvoluted the transcriptome datasets using non-negative matrix factorisation, which identified four distinct transcriptome patterns in the growing leaves of both species. By integrating the leaf anatomy and transcriptome data, we were able to correlate the different transcriptional profiles with different developmental zones in the leaves. These comparisons revealed an important role for auxin metabolism, in particular auxin homeostasis (conjugation and deconjugation), in establishing the high vein density typical of C<sub>4</sub> species.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 4","pages":"1438-1456"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17059","citationCount":"0","resultStr":"{\"title\":\"Transcriptome dynamics in developing leaves from C3 and C4 Flaveria species\",\"authors\":\"Kumari Billakurthi, Thomas J. Wrobel, Udo Gowik, Andrea Bräutigam, Andreas P. M. Weber, Peter Westhoff\",\"doi\":\"10.1111/tpj.17059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>C<sub>4</sub> species have evolved more than 60 times independently from C<sub>3</sub> ancestors. This multiple and parallel evolution of the complex C<sub>4</sub> trait suggests common underlying evolutionary mechanisms, which could be identified by comparative analysis of closely related C<sub>3</sub> and C<sub>4</sub> species. Efficient C<sub>4</sub> function depends on a distinctive leaf anatomy that is characterised by enlarged, chloroplast-rich bundle sheath cells and narrow vein spacing. To elucidate the molecular mechanisms that generate the Kranz anatomy, we analysed a developmental series of leaves from the C<sub>4</sub> plant <i>Flaveria bidentis</i> and the closely related C<sub>3</sub> species <i>Flaveria robusta</i> by comparing anatomies and transcriptomes. Vascular density measurements of all nine leaf developmental stages identified three leaf anatomical zones whose proportions vary with respect to the developmental stage. We then deconvoluted the transcriptome datasets using non-negative matrix factorisation, which identified four distinct transcriptome patterns in the growing leaves of both species. By integrating the leaf anatomy and transcriptome data, we were able to correlate the different transcriptional profiles with different developmental zones in the leaves. These comparisons revealed an important role for auxin metabolism, in particular auxin homeostasis (conjugation and deconjugation), in establishing the high vein density typical of C<sub>4</sub> species.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"120 4\",\"pages\":\"1438-1456\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17059\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17059","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Transcriptome dynamics in developing leaves from C3 and C4 Flaveria species
C4 species have evolved more than 60 times independently from C3 ancestors. This multiple and parallel evolution of the complex C4 trait suggests common underlying evolutionary mechanisms, which could be identified by comparative analysis of closely related C3 and C4 species. Efficient C4 function depends on a distinctive leaf anatomy that is characterised by enlarged, chloroplast-rich bundle sheath cells and narrow vein spacing. To elucidate the molecular mechanisms that generate the Kranz anatomy, we analysed a developmental series of leaves from the C4 plant Flaveria bidentis and the closely related C3 species Flaveria robusta by comparing anatomies and transcriptomes. Vascular density measurements of all nine leaf developmental stages identified three leaf anatomical zones whose proportions vary with respect to the developmental stage. We then deconvoluted the transcriptome datasets using non-negative matrix factorisation, which identified four distinct transcriptome patterns in the growing leaves of both species. By integrating the leaf anatomy and transcriptome data, we were able to correlate the different transcriptional profiles with different developmental zones in the leaves. These comparisons revealed an important role for auxin metabolism, in particular auxin homeostasis (conjugation and deconjugation), in establishing the high vein density typical of C4 species.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.