{"title":"用于高效有机太阳能电池的二维 g-C3N5 p 掺杂馈源材料。","authors":"Song Yang, Bo Yu, Huangzhong Yu","doi":"10.1002/smtd.202401307","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular doping of organic semiconductor is a great strategy for significantly regulating the electronic band structure of organic semiconductor while increasing charge mobility and carrier concentration. Here, a facile strategy is presented by introducing 2D g-C<sub>3</sub>N<sub>5</sub> as a p-dopant into PM6, improving the charge mobility and hole carrier concentration of PM6. Moreover, the electron transfer between PM6 and g-C<sub>3</sub>N<sub>5</sub> can effectively downshift the Fermi energy level and highest occupied molecular orbital (HOMO) energy level of PM6, which leads to the increase the built-in electric field of organic solar cells (OSCs). The addition of g-C<sub>3</sub>N<sub>5</sub> also effectively enhances the crystallization of active layer, thereby improving the stability of OSCs. As a result, a champion bulk-heterojunction (BHJ) and layer-by-layer (LbL) structure OSCs are successfully achieved featuring a high-power conversion efficiency of 18.10%/18.25%, simultaneously having excellent device stability. This work shows that introducing a low concentration dopant into organic donor is an effective method for improving the electrical performance of organic donor and the efficiency of OSCs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D g-C<sub>3</sub>N<sub>5</sub> p-Doping of Donor Material for High-Efficiency Organic Solar Cells.\",\"authors\":\"Song Yang, Bo Yu, Huangzhong Yu\",\"doi\":\"10.1002/smtd.202401307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular doping of organic semiconductor is a great strategy for significantly regulating the electronic band structure of organic semiconductor while increasing charge mobility and carrier concentration. Here, a facile strategy is presented by introducing 2D g-C<sub>3</sub>N<sub>5</sub> as a p-dopant into PM6, improving the charge mobility and hole carrier concentration of PM6. Moreover, the electron transfer between PM6 and g-C<sub>3</sub>N<sub>5</sub> can effectively downshift the Fermi energy level and highest occupied molecular orbital (HOMO) energy level of PM6, which leads to the increase the built-in electric field of organic solar cells (OSCs). The addition of g-C<sub>3</sub>N<sub>5</sub> also effectively enhances the crystallization of active layer, thereby improving the stability of OSCs. As a result, a champion bulk-heterojunction (BHJ) and layer-by-layer (LbL) structure OSCs are successfully achieved featuring a high-power conversion efficiency of 18.10%/18.25%, simultaneously having excellent device stability. This work shows that introducing a low concentration dopant into organic donor is an effective method for improving the electrical performance of organic donor and the efficiency of OSCs.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401307\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401307","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
2D g-C3N5 p-Doping of Donor Material for High-Efficiency Organic Solar Cells.
Molecular doping of organic semiconductor is a great strategy for significantly regulating the electronic band structure of organic semiconductor while increasing charge mobility and carrier concentration. Here, a facile strategy is presented by introducing 2D g-C3N5 as a p-dopant into PM6, improving the charge mobility and hole carrier concentration of PM6. Moreover, the electron transfer between PM6 and g-C3N5 can effectively downshift the Fermi energy level and highest occupied molecular orbital (HOMO) energy level of PM6, which leads to the increase the built-in electric field of organic solar cells (OSCs). The addition of g-C3N5 also effectively enhances the crystallization of active layer, thereby improving the stability of OSCs. As a result, a champion bulk-heterojunction (BHJ) and layer-by-layer (LbL) structure OSCs are successfully achieved featuring a high-power conversion efficiency of 18.10%/18.25%, simultaneously having excellent device stability. This work shows that introducing a low concentration dopant into organic donor is an effective method for improving the electrical performance of organic donor and the efficiency of OSCs.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.