{"title":"LpHsfA2分子模块通过微调其在多年生黑麦草(Lolium perenne L.)中的转录赋予耐热性。","authors":"Guangjing Ma, Zhihao Liu, Shurui Song, Jing Gao, Shujie Liao, Shilong Cao, Yan Xie, Liwen Cao, Longxing Hu, Haichun Jing, Liang Chen","doi":"10.1111/jipb.13789","DOIUrl":null,"url":null,"abstract":"<p>Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (<i>Lolium perenne</i> L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that <i>LpHsfA2</i>, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of <i>LpHsfA2</i> compared with heat-sensitive ones. Comparative haplotype analysis of the <i>LpHsfA2</i> promoter indicated an uneven distribution of two haplotypes (<i>HsfA2</i><sup>Hap1</sup> and <i>HsfA2</i><sup>Hap2</sup>) across varieties with differing heat tolerance. Specifically, the <i>HsfA2</i><sup>Hap1</sup> allele is predominantly present in heat-tolerant varieties, while the <i>HsfA2</i><sup>Hap2</sup> allele exhibits the opposite pattern. Overexpression of <i>LpHsfA2</i> confers enhanced thermotolerance, whereas silencing of <i>LpHsfA2</i> compromises heat tolerance. Furthermore, <i>LpHsfA2</i> orchestrates its protective effects by directly binding to the promoters of <i>LpHSP18.2</i> and <i>LpAPX1</i> to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of <i>LpHsfA2</i>, upregulating its expression as well as the expression of <i>LpHSP18.2</i> and <i>LpAPX1</i>, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 11","pages":"2346-2361"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13789","citationCount":"0","resultStr":"{\"title\":\"The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.)\",\"authors\":\"Guangjing Ma, Zhihao Liu, Shurui Song, Jing Gao, Shujie Liao, Shilong Cao, Yan Xie, Liwen Cao, Longxing Hu, Haichun Jing, Liang Chen\",\"doi\":\"10.1111/jipb.13789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (<i>Lolium perenne</i> L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that <i>LpHsfA2</i>, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of <i>LpHsfA2</i> compared with heat-sensitive ones. Comparative haplotype analysis of the <i>LpHsfA2</i> promoter indicated an uneven distribution of two haplotypes (<i>HsfA2</i><sup>Hap1</sup> and <i>HsfA2</i><sup>Hap2</sup>) across varieties with differing heat tolerance. Specifically, the <i>HsfA2</i><sup>Hap1</sup> allele is predominantly present in heat-tolerant varieties, while the <i>HsfA2</i><sup>Hap2</sup> allele exhibits the opposite pattern. Overexpression of <i>LpHsfA2</i> confers enhanced thermotolerance, whereas silencing of <i>LpHsfA2</i> compromises heat tolerance. Furthermore, <i>LpHsfA2</i> orchestrates its protective effects by directly binding to the promoters of <i>LpHSP18.2</i> and <i>LpAPX1</i> to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of <i>LpHsfA2</i>, upregulating its expression as well as the expression of <i>LpHSP18.2</i> and <i>LpAPX1</i>, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\"66 11\",\"pages\":\"2346-2361\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13789\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13789\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13789","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.)
Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (Lolium perenne L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that LpHsfA2, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of LpHsfA2 compared with heat-sensitive ones. Comparative haplotype analysis of the LpHsfA2 promoter indicated an uneven distribution of two haplotypes (HsfA2Hap1 and HsfA2Hap2) across varieties with differing heat tolerance. Specifically, the HsfA2Hap1 allele is predominantly present in heat-tolerant varieties, while the HsfA2Hap2 allele exhibits the opposite pattern. Overexpression of LpHsfA2 confers enhanced thermotolerance, whereas silencing of LpHsfA2 compromises heat tolerance. Furthermore, LpHsfA2 orchestrates its protective effects by directly binding to the promoters of LpHSP18.2 and LpAPX1 to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of LpHsfA2, upregulating its expression as well as the expression of LpHSP18.2 and LpAPX1, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.