Nicole M Tosto, Emily Rose, Heather D Mason, Judith E Mank, Sarah P Flanagan
{"title":"在暗色琵琶鱼中,非基本性状的性选择受到性别表达遗传限制的证据的支持。","authors":"Nicole M Tosto, Emily Rose, Heather D Mason, Judith E Mank, Sarah P Flanagan","doi":"10.1111/mec.17550","DOIUrl":null,"url":null,"abstract":"<p><p>Species lacking distinct secondary sex characteristics, such as differences in size or morphology, are often thought to experience lower levels of sex-specific selection in comparison to highly sexually dimorphic organisms. However, monomorphism in classic visible traits could be a result of genetic or physiological constraints that prevent the sexes from reaching divergent fitness optima. Additionally, biochemical and molecular work have revealed a variety of less easily observed phenotypes that nonetheless exhibit profound dimorphism. Sex-specific selection could act on these more subtle, less visible, traits. We investigate sex-specific selection in the polygynandrous dusky pipefish (Syngnathus floridae), which lacks distinct secondary sexual characteristics such as size, colour and morphological dimorphism. Using experimental breeding populations, we revealed that although males and females have similar opportunities for sexual selection, only males experience significant sexual selection pressures on body size. We also investigated patterns of sex-biased and sex-specific gene expression in gonads, livers and gills, and tested whether genes with highly divergent expression patterns between the sexes are more likely to be tissue-specific, and therefore relieved of genetic constraints. Sex bias in gene expression was widespread, although the reproductive organs had the most sex-biased and sex-specific genes. Sex-specific selection on gene expression in gills was primarily related to immune response, whereas the liver and gonads had a wide variety of cellular processes, as well as reproductive proteins, showing sex-biased expression. These sex-biased genes showed higher organ-specificity in their expression patterns, suggesting that pleiotropic constraints might have historically impacted the evolution of sex-specific expression patterns. Altogether, we find evidence for ongoing and historical sex-specific selection in the dusky pipefish.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17550"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sexual Selection on Non-Ornamental Traits Is Underpinned by Evidence of Genetic Constraints on Sex-Biased Expression in Dusky Pipefish.\",\"authors\":\"Nicole M Tosto, Emily Rose, Heather D Mason, Judith E Mank, Sarah P Flanagan\",\"doi\":\"10.1111/mec.17550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Species lacking distinct secondary sex characteristics, such as differences in size or morphology, are often thought to experience lower levels of sex-specific selection in comparison to highly sexually dimorphic organisms. However, monomorphism in classic visible traits could be a result of genetic or physiological constraints that prevent the sexes from reaching divergent fitness optima. Additionally, biochemical and molecular work have revealed a variety of less easily observed phenotypes that nonetheless exhibit profound dimorphism. Sex-specific selection could act on these more subtle, less visible, traits. We investigate sex-specific selection in the polygynandrous dusky pipefish (Syngnathus floridae), which lacks distinct secondary sexual characteristics such as size, colour and morphological dimorphism. Using experimental breeding populations, we revealed that although males and females have similar opportunities for sexual selection, only males experience significant sexual selection pressures on body size. We also investigated patterns of sex-biased and sex-specific gene expression in gonads, livers and gills, and tested whether genes with highly divergent expression patterns between the sexes are more likely to be tissue-specific, and therefore relieved of genetic constraints. Sex bias in gene expression was widespread, although the reproductive organs had the most sex-biased and sex-specific genes. Sex-specific selection on gene expression in gills was primarily related to immune response, whereas the liver and gonads had a wide variety of cellular processes, as well as reproductive proteins, showing sex-biased expression. These sex-biased genes showed higher organ-specificity in their expression patterns, suggesting that pleiotropic constraints might have historically impacted the evolution of sex-specific expression patterns. Altogether, we find evidence for ongoing and historical sex-specific selection in the dusky pipefish.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17550\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17550\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17550","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sexual Selection on Non-Ornamental Traits Is Underpinned by Evidence of Genetic Constraints on Sex-Biased Expression in Dusky Pipefish.
Species lacking distinct secondary sex characteristics, such as differences in size or morphology, are often thought to experience lower levels of sex-specific selection in comparison to highly sexually dimorphic organisms. However, monomorphism in classic visible traits could be a result of genetic or physiological constraints that prevent the sexes from reaching divergent fitness optima. Additionally, biochemical and molecular work have revealed a variety of less easily observed phenotypes that nonetheless exhibit profound dimorphism. Sex-specific selection could act on these more subtle, less visible, traits. We investigate sex-specific selection in the polygynandrous dusky pipefish (Syngnathus floridae), which lacks distinct secondary sexual characteristics such as size, colour and morphological dimorphism. Using experimental breeding populations, we revealed that although males and females have similar opportunities for sexual selection, only males experience significant sexual selection pressures on body size. We also investigated patterns of sex-biased and sex-specific gene expression in gonads, livers and gills, and tested whether genes with highly divergent expression patterns between the sexes are more likely to be tissue-specific, and therefore relieved of genetic constraints. Sex bias in gene expression was widespread, although the reproductive organs had the most sex-biased and sex-specific genes. Sex-specific selection on gene expression in gills was primarily related to immune response, whereas the liver and gonads had a wide variety of cellular processes, as well as reproductive proteins, showing sex-biased expression. These sex-biased genes showed higher organ-specificity in their expression patterns, suggesting that pleiotropic constraints might have historically impacted the evolution of sex-specific expression patterns. Altogether, we find evidence for ongoing and historical sex-specific selection in the dusky pipefish.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms