Zhenqiang Ge, Hangning Liu, Shan Wang, Yingjun Ma, Wenhao Xu, Linghao Su, Lei Han, Liangyu Gong, Jie Wang
{"title":"通过调节乙腈共溶剂和碳纳米管载体优化锌硫水溶液电池性能。","authors":"Zhenqiang Ge, Hangning Liu, Shan Wang, Yingjun Ma, Wenhao Xu, Linghao Su, Lei Han, Liangyu Gong, Jie Wang","doi":"10.1002/cssc.202401429","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes shuttle effects during discharge/charge cycles, hindering practical applications. Improving performance requires optimizing both the cathode and electrolyte. Herein, we design an organic-inorganic hybrid electrolyte (zinc trifluoromethanesulfonate and trace iodine monomer dissolved in an acetonitrile/water co-solvent (AN-X)) and a partially exfoliated multi-walled carbon nanotube (PECNT) hosted sulfur (S@PECNTs) cathode for AZSBs. The sulfur is highly dispersed along the PECNTs with appropriate wettability at the electrode/electrolyte interface using AN-3 as the electrolyte. Meanwhile, this electrolyte inhibits hydrogen evolution at negative potentials and promotes uniform Zn ion stripping/plating. Expressively, the AN-3-based AZSB exhibits a high discharge capacity of 1370 mAh g<sup>-1</sup> with excellent Coulombic efficiency (79.9 %), outstanding rate capability, and cycling performance. These improvements are attributed to the synergistic effect between the S@PECNTs and the AN-3 electrolyte, which reduces R<sub>ct</sub> to enhance reaction kinetics and blocks the dissolution and shuttle effect of polysulfides, ensuring a reversible reaction between zinc and sulfur.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401429"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Aqueous Zinc-Sulfur Battery Performance via Regulating Acetonitrile Co-Solvents and Carbon Nanotube Carriers.\",\"authors\":\"Zhenqiang Ge, Hangning Liu, Shan Wang, Yingjun Ma, Wenhao Xu, Linghao Su, Lei Han, Liangyu Gong, Jie Wang\",\"doi\":\"10.1002/cssc.202401429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes shuttle effects during discharge/charge cycles, hindering practical applications. Improving performance requires optimizing both the cathode and electrolyte. Herein, we design an organic-inorganic hybrid electrolyte (zinc trifluoromethanesulfonate and trace iodine monomer dissolved in an acetonitrile/water co-solvent (AN-X)) and a partially exfoliated multi-walled carbon nanotube (PECNT) hosted sulfur (S@PECNTs) cathode for AZSBs. The sulfur is highly dispersed along the PECNTs with appropriate wettability at the electrode/electrolyte interface using AN-3 as the electrolyte. Meanwhile, this electrolyte inhibits hydrogen evolution at negative potentials and promotes uniform Zn ion stripping/plating. Expressively, the AN-3-based AZSB exhibits a high discharge capacity of 1370 mAh g<sup>-1</sup> with excellent Coulombic efficiency (79.9 %), outstanding rate capability, and cycling performance. These improvements are attributed to the synergistic effect between the S@PECNTs and the AN-3 electrolyte, which reduces R<sub>ct</sub> to enhance reaction kinetics and blocks the dissolution and shuttle effect of polysulfides, ensuring a reversible reaction between zinc and sulfur.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401429\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401429\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401429","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Aqueous Zinc-Sulfur Battery Performance via Regulating Acetonitrile Co-Solvents and Carbon Nanotube Carriers.
Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes shuttle effects during discharge/charge cycles, hindering practical applications. Improving performance requires optimizing both the cathode and electrolyte. Herein, we design an organic-inorganic hybrid electrolyte (zinc trifluoromethanesulfonate and trace iodine monomer dissolved in an acetonitrile/water co-solvent (AN-X)) and a partially exfoliated multi-walled carbon nanotube (PECNT) hosted sulfur (S@PECNTs) cathode for AZSBs. The sulfur is highly dispersed along the PECNTs with appropriate wettability at the electrode/electrolyte interface using AN-3 as the electrolyte. Meanwhile, this electrolyte inhibits hydrogen evolution at negative potentials and promotes uniform Zn ion stripping/plating. Expressively, the AN-3-based AZSB exhibits a high discharge capacity of 1370 mAh g-1 with excellent Coulombic efficiency (79.9 %), outstanding rate capability, and cycling performance. These improvements are attributed to the synergistic effect between the S@PECNTs and the AN-3 electrolyte, which reduces Rct to enhance reaction kinetics and blocks the dissolution and shuttle effect of polysulfides, ensuring a reversible reaction between zinc and sulfur.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology