{"title":"用于能源和环境应用的共价网络上的机械互锁大环。","authors":"Muhua Gu, Suleman Suleman, Yoonseob Kim","doi":"10.1002/cplu.202400597","DOIUrl":null,"url":null,"abstract":"<p><p>Macrocycles' unique properties of interacting with guest molecules have been an intriguing scientific endeavor for many decades. They are potentially practically useful for engineering applications, especially in energy and environmental applications. These applications are usually demanding, involving a high temperature, pH, voltage, etc., thus, finding suitable substrates that can endure working environments and sustain macrocycles' properties is highly desirable. In that sense, covalent networks are ideal as they are chemically/electrochemically/thermally stable and can be porous by design. Emerging porous materials, especially covalent organic frameworks (COFs), could be suitable as their porous spaces allow macrocycles to interact with guest species. In the past seven years, we have seen the rise of mechanically interlocked macrocycles on covalent networks (MIMc-CNs) that translate macrocycles' properties into macroscale materials. In this conceptual review, we first describe the idea of integrating MIMcs into COFs or conventional amorphous polymers. Next, we review the reported representative MIMc-CNs used in energy and environmental applications. We also provide a brief outlook for the future directions for the MIMc-CNs research.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400597"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically Interlocked Macrocycles on Covalent Networks for Energy and Environmental Applications.\",\"authors\":\"Muhua Gu, Suleman Suleman, Yoonseob Kim\",\"doi\":\"10.1002/cplu.202400597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrocycles' unique properties of interacting with guest molecules have been an intriguing scientific endeavor for many decades. They are potentially practically useful for engineering applications, especially in energy and environmental applications. These applications are usually demanding, involving a high temperature, pH, voltage, etc., thus, finding suitable substrates that can endure working environments and sustain macrocycles' properties is highly desirable. In that sense, covalent networks are ideal as they are chemically/electrochemically/thermally stable and can be porous by design. Emerging porous materials, especially covalent organic frameworks (COFs), could be suitable as their porous spaces allow macrocycles to interact with guest species. In the past seven years, we have seen the rise of mechanically interlocked macrocycles on covalent networks (MIMc-CNs) that translate macrocycles' properties into macroscale materials. In this conceptual review, we first describe the idea of integrating MIMcs into COFs or conventional amorphous polymers. Next, we review the reported representative MIMc-CNs used in energy and environmental applications. We also provide a brief outlook for the future directions for the MIMc-CNs research.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400597\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400597\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400597","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanically Interlocked Macrocycles on Covalent Networks for Energy and Environmental Applications.
Macrocycles' unique properties of interacting with guest molecules have been an intriguing scientific endeavor for many decades. They are potentially practically useful for engineering applications, especially in energy and environmental applications. These applications are usually demanding, involving a high temperature, pH, voltage, etc., thus, finding suitable substrates that can endure working environments and sustain macrocycles' properties is highly desirable. In that sense, covalent networks are ideal as they are chemically/electrochemically/thermally stable and can be porous by design. Emerging porous materials, especially covalent organic frameworks (COFs), could be suitable as their porous spaces allow macrocycles to interact with guest species. In the past seven years, we have seen the rise of mechanically interlocked macrocycles on covalent networks (MIMc-CNs) that translate macrocycles' properties into macroscale materials. In this conceptual review, we first describe the idea of integrating MIMcs into COFs or conventional amorphous polymers. Next, we review the reported representative MIMc-CNs used in energy and environmental applications. We also provide a brief outlook for the future directions for the MIMc-CNs research.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.